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Abstract

In this paper, we propose a novel object detection frame-
work named "Deep Regionlets" by establishing a bridge
between deep neural networks and conventional detection
schema for accurate generic object detection. Motivated by
the advantages of regionlets on modeling object deformation
and multiple aspect ratios, we incorporate regionlet into an
end-to-end trainable deep learning framework. The deep
regionlets framework consists of a region selection network
and a deep regionlet learning module. Specifically, given a
detection bounding box proposal, the region selection net-
work serves as a guidance on where to select regions to learn
the features from. The regionlet learning module focuses
on local feature selection and transformation to alleviate lo-
cal variations. To this end, we first realize non-rectangular
region selection within the detection framework to accommo-
date variations in object appearance. Moreover, we further
design a “gating network" within the regionlet leaning mod-
ule to enable soft regionlet selection and pooling. The Deep
Regionlets framework is trained end-to-end without addi-
tional efforts. We perform ablation studies on its behavior
and conduct extensive experiments on the PASCAL VOC and
Microsoft COCO dataset. The proposed framework outper-
forms state-of-the-art algorithms, such as RetinaNet and
Mask R-CNN, even without additional segmentation labels.

1. Introduction
Generic object detection has been extensively studied in

computer vision community over the decades [20, 3, 42, 14,
15, 36, 5, 26, 41, 40, 7, 10, 44, 12, 45] due to its appeal to
both academic research explorations as well as commercial
applications. Given an image of interest, the goal of object
detection is to predict the locations of objects and classify
them at the same time. The key challenge of the object
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detection task is to handle variations in object scale, pose,
viewpoint and even part deformations when generating the
bounding boxes for specified object categories.

Numerous methods have been proposed based on hand-
crafted features (i.e. HOG [7], LBP [1], SIFT [30]). These
approaches usually involve an exhaustive search for possible
locations, scales and aspect ratios of the object, by using
the sliding window approach. However, Wang et al.’s [41]
regionlet-based detection framework has gained a lot of at-
tention as it provides the flexibility to deal with different
scales and aspect ratios without performing an exhaustive
search. It first proposed the concept of regionlet by defin-
ing a three-level structural relationship: candidate bounding
boxes (sliding windows), regions inside the bounding box
and groups of regionlets (sub-regions inside each region). It
operates by directly extracting features from regionlets in
several selected regions within an arbitrary detection bound-
ing box and performs (max) pooling among the regionlets.
Such a feature extraction hierarchy is capable of dealing with
variable aspect ratios and flexible feature sets, which leads
to improved learning of robust feature representation of the
object for region-based object detection.

Putting this work in context, recently, deep learning has
achieved significant success on computer vision tasks in
many aspects such as image classification [23, 18], seman-
tic segmentation [29] and object detection [14] using the
deep convolutional neural network (DCNN) architecture.
Despite the excellent performance of deep learning-based
detection framework, most network architectures [36, 5, 28]
do not take advantage of successful conventional ideas such
as deformable part-based model (DPM) or regionlets. Those
methods have been effective for modeling object deforma-
tion, sub-categories and multiple aspect ratios. Recent ad-
vances [33, 6, 32] have achieved promising results by ex-
tending the conventional DPM-based detection methodology
with the deep neural network architectures.

These observations motivate us to establish a bridge be-
tween deep convolutional neural network and conventional
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Figure 1: Architecture of the Deep Regionlets detection framework. It consists of a region selection network (RSN) and a deep
regionlet learning module. RSN performs non-rectangular region selection from the detection window proposal generated by
the region proposal network. Deep regionlet learning module learns the regionlets through a spatial transformation and a gating
network. The entire pipeline is end-to-end trainable. For better visualization, region proposal network is not displayed here.

object detection schema. In this paper, we incorporate the
conventional Regionlet method into an end-to-end trainable
deep learning framework. Despite being able to handle the
arbitrary bounding boxes, several drawbacks arise when di-
rectly integrating the regionlet methodology into the deep
learning framework. First, in [41], Wang et al. proposed
to learn cascade object classifiers after hand-crafted feature
extraction in each regionlet. However, end-to-end learn-
ing is not feasible in such framework. Second, regions in
regionlet-based detection have to be rectangular, which does
not effectively model the deformation in the object with vari-
able shapes. Moreover, both regions and regionlets are fixed
after training is completed.

To this end, we propose a novel object detection frame-
work named "Deep Regionlets" to introduce deep learning
framework to the traditional regionlet method [41]. The over-
all design of the proposed detection system is illustrated in
Figure 1. It consists of a region selection network and a deep
regionlet learning module. The region selection network
(RSN) performs non-rectangular region selection from the
detection window proposal1 (RoI) to address limitations of
the traditional regionlet approach. We further design a deep
regionlet learning module to learn the regionlets through
a spatial transformation and a gating network. By using
the proposed gating network, which is a soft regionlet se-
lector, the final feature representation is more suitable for
detection. The entire pipeline is end-to-end trainable using
only the input images and ground truth bounding boxes as

1The detection window proposal is generated by a region proposal
network (RPN) [36, 5, 15]. It is also called region of interest (ROI)

supervision.
We conduct a detailed analysis of our approach to under-

stand its merits and properties. Extensive experiments on
two detection benchmark datasets, PASCAL VOC [8] and
Microsoft COCO [27] show that the proposed deep regionlet
approach outperforms several competitors [36, 5, 47, 6, 32].
Even without segmentation labels and feature pyramid, we
outperform state-of-the-art algorithms Mask R-CNN [16]
and RetinaNet [26]. To summarize, we make the following
contributions:

• We propose a novel deep regionlet approach for object
detection. Our work extends the traditional regionlet
method to the deep learning framework. The system
could be trained in a fully end-to-end manner.

• We design a region selection network (RSN), which
first performs non-rectangular regions selection
within the detection bounding box generated from a de-
tection window proposal. It provides more flexibility in
modeling objects with variable shapes and deformable
parts.

• We propose a deep regionlet learning module, includ-
ing feature transformation and a gating network. The
gating network serves as a soft regionlet selector and
let the network focus on features that benefit detection
performance.

• We present empirical results on object detection bench-
mark datasets, which demonstrates the superior perfor-
mance over state-of-the-art.



2. Related Work
Object detection has gained a lot of popularity over

decades. Many approaches have been proposed including
both traditional ones [10, 41, 40] and deep learning-based
approaches [15, 36, 28, 34, 5, 14, 17, 6, 32, 11, 47, 19, 4, 46,
44, 12]. Traditional approaches mainly used hand-crafted
features (i.e. HOG [7], LBP [1]) to train the object detec-
tors using sliding window paradigm. One of the earliest
works [40] used boosted cascaded detectors for face detec-
tion, which led to its wide adoption. Deformable Part Model
based detection (DPM) [9] further extended the cascaded
detectors to more general object categories. It proposed the
concept of deformable part models to handle object defor-
mations. Due to the rapid development of deep learning
techniques [23, 18, 39], the deep learning-based detectors
have become dominant object detectors.

Deep learning-based detectors could be further catego-
rized into two classes, single-stage detectors and two-stage
detectors, based on whether the detectors have proposal-
driven mechanism or not. The single-stage detectors [37,
34, 28, 11, 25, 26] apply regular, dense sampling windows
over object locations, scales and aspect ratios. By exploiting
multiple layers within a deep CNN network directly, the
single-stage detectors achieved high speed but their accuracy
was low compared to two-stage detectors.

Two-stage detectors [15, 36, 5, 6, 32, 16] involve two
steps. It first generates a sparse set of candidate proposals
of detection bounding boxes by the region proposal network
(RPN). After filtering out the majority of negative back-
ground boxes by RPN, the second stage classifies the propos-
als of detection bounding boxes and performs the bounding
box regression to predict the object categories and their cor-
responding locations. The two-stage detectors consistently
achieve higher accuracy than single-stage detectors and nu-
merous extensions have been proposed [15, 36, 5, 6, 32, 16].
Our method follows the two-stage detector architecture by
taking advantage of the region proposal network without the
need of dense sampling of object locations, scales and aspect
ratios.

3. Our Approach
In this section, We first review the traditional regionlet-

based detection methods and then present the overall design
of the proposed deep regionlet approach with end-to-end
training. Finally, we discuss in detail each module in the
proposed end-to-end deep regionlet approach.

3.1. Traditional Regionlet-based Approach

A regionlet is a base feature extraction region defined pro-
portionally to a window (i.e. a sliding window or a detection
bounding box) at arbitrary resolution (i.e. size and aspect
ratio). Wang et al. [41] first introduced the concept of region-

let, as illustrated in Figure 2. It defines a three-level structure
among a detecting bounding box, number of regions inside
the bounding box and a group of regionlets (sub-regions in-
side each region). In Figure 2, the yellow box is a detection
bounding box. R is a rectangular feature extraction region
inside the bounding box. Furthermore, small sub-regions
ri{i=1...N}(e.g. r1, r2) are chosen within region R, where
we define them as a set of regionlets.

𝑅
𝑟# 𝑟$

Figure 2: Illustration of structural relationships among the
detection bounding box, feature extraction regions and re-
gionlets. The yellow box is a detection bounding box and
R is a feature extraction region shown as a purple rectangle
with filled dots inside the bounding box. Inside R, two small
sub-regions denoted as r1 and r2 are the regionlets.

The difficulty of the arbitrary detection bounding box
has been well addressed by using the relative positions and
sizes of regionlets and regions. However, in the traditional
approach, the initialization of regionlets possess randomness
and both regions (R) and regionlets (i.e. r1, r2) are fixed
after the training. Moreover, it is based on hand-crafted fea-
ture (i.e. HOG [7] or LBP descriptors [1]) in each regionlet
respectively and hence not end-to-end trainable. To this end,
we propose the following deep regionlet-based approach to
address such limitations.

3.2. System Architecture

Generally speaking, an object detection network performs
a sequence of convolutional operations on an image of in-
terest using a deep convolutional neural network. At some
layer, the network bifurcates into two branches. One branch,
RPN generates a set of candidate bounding boxes2 while the
other branch performs classification and regression by pool-
ing the convolutional features inside the proposed bounding
box generated by the region proposal network [36, 5]. Tak-
ing advantage of this detection network, we introduce the
overall design of the proposed object detection framework,
named "Deep Regionlets", as illustrated in Figure 1.

The general architecture consists of a region selection
network (RSN) and a deep regionlet learning module. In
particular, our region selection network is used to predict the

2 [36, 5, 15] also called the detection bounding box as detection window
proposal



transformation parameters to select regions given a candidate
bounding box, which is generated by the region proposal
network. The regionlets are further learned within each
selected region defined by the region selection network. The
system is designed to be trained in a fully end-to-end manner
using only the input images and ground truth bounding box.
The region selection network as well as the regionlet learning
module can be simultaneously learned over each selected
region given the detection window proposal.

3.3. Region Selection Network
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Figure 3: Example of initialization of one affine transforma-
tion parameter. Normalized affine transformation parameters
Θ0 = [ 13 , 0,−

2
3 ; 0, 13 ,

2
3 ] (θi ∈ [−1, 1]) selects the top-left

region in the 3× 3 evenly divided detection bounding box,
shown as the purple rectangle.

We design the region selection network (RSN) to have
the following properties: 1) End-to-end trainable; 2) Simple
structure; 3) Generate regions with arbitrary shape. Keeping
these in mind, we design the RSN to predict a set of affine
transformation parameters. By using these affine transfor-
mation parameters, as well as not requiring the regions to
be rectangular, we have more flexibility in modeling object
with arbitrary shape and deformable parts.

Specifically, we design the RSN using a small neural net-
work with three fully connected layers. The first two fully
connected layers have output size of 256, with ReLU acti-
vation. The last fully connected layer has the output size of
six, which is used to predict the set of affine transformation
parameters Θ = [θ1, θ2, θ3; θ4, θ5, θ6].

Note that the candidate detection bounding boxes pro-
posed by RSN have arbitrary sizes and aspect ratios. In
order to address this difficulty, we use relative positions and
sizes of the selected region within a detection bounding box.
The candidate bounding box generated by the region pro-
posal network is defined by the top-left point (w0, h0), width
w and height h of the box. We normalize the coordinates
by the width w and height h of the box. As a result, we
could use the normalized affine transformation parameters

Θ = [θ1, θ2, θ3; θ4, θ5, θ6] (θi ∈ [−1, 1]) to evaluate one
selected region within one candidate detection window at
different sizes and aspect ratios without scaling images into
multiple resolutions or using multiple-components to enu-
merate possible aspect ratios, like anchors [36, 28, 11].

Initialization of Region Selection Network: Taking advan-
tage of the relative and normalized coordinates, we initialize
the RSN by equally dividing the whole detecting bounding
box to several sub-regions, named as cells, without any over-
lap among them. Figure 3 shows an example of initialization
from one affine transformation (i.e. 3 × 3). The first cell,
which is the top-left bin in the whole region (detection bound-
ing box) could be defined by initializing the corresponding
affine transformation parameter Θ0 = [ 13 , 0,−

2
3 ; 0, 13 ,

2
3 ].

The other eight of 3× 3 cells are initialized in a similar way.

3.4. Deep Regionlet Learning

After regions are selected by the region selection network,
regionlets are further learned from the selected region de-
fined by the normalized affine transformation parameters.
Note that our motivation is to design the network to be
trained in a fully end-to-end manner using only the input im-
ages and the ground truth bounding boxes. Therefore, both
the selected regions and regionlet learning should be able
to be trained by CNN networks. Moreover, we would like
the regionlets extracted from the selected regions to better
represent objects with variable shapes and deformable parts.

Inspired by the spatial transform network [21], any param-
eterizable transformation including translation, scaling, rota-
tion, affine or even projective transformation can be learned
by spatial transformer. In this section, we introduce our deep
regionlet learning module to learn the regionlets in the se-
lected region, which is defined by the affine transformation
parameters.

More specifically, we aim to learn regionlets from one
selected region defined by one affine transformation Θ to
better match the shapes of objects. This is done with a
selected region R from region selection network, transfor-
mation parameters Θ = [θ1, θ2, θ3; θ4, θ5, θ6] and a set of
feature maps Z = {Zi, i = 1, . . . , n}. Without loss of gen-
erality, let Zi be one of the feature map out of the n feature
maps. A selected region R is of size w × h with the top-left
corner (w0, h0). Inside the Zi feature maps, we propose the
regionlet learning module discussed below:

Let (xsp, y
s
p) define the spatial location in feature map Zi.

U c
nm is the value at location (n,m) in channel c of the input

feature. The total output feature map V is of size H ×W .
Let V (xtp, y

t
p, c|Θ, R) be the output feature value at location

(xtp, y
t
p) (xtp ∈ [0, H], ytp ∈ [0,W ]) in channel c, which is

computed as



V (xsp, y
s
p, c|Θ, R) =

H∑
n

M∑
m

Uc
nm max(0, 1− |xsp −m|)

max(0, 1− |ysp − n|)

(1)

Back Propagation through Spatial Transform To al-
low back propagation of the loss through the regionlet
learning module, we can define the gradients with respect
to both the feature maps and the region selection net-
work. In this layer’s backward function, we have par-
tial derivative of the loss function with respect to both
feature map variable U c

mn and affine transform parameter
Θ = [θ1, θ2, θ3; θ4, θ5, θ6]. Motivated by [21], the partial
derivative of the loss function with respect to the feature
map is:

∂V (xsp, y
s
p, c|Θ, R)

∂Uc
nm

=
H∑
n

M∑
m

max(0, 1− |xsp −m|)

×max(0, 1− |ysp − n|)

(2)

Moreover, during the back propagation, we need to compute
the gradient with respect to each affine transformation pa-
rameter Θ = [θ1, θ2, θ3; θ4, θ5, θ6]. In this way, the region
selection network could also be updated to adjust the selected
region. We take θ1 as an example due to space limitations
and similar derivative can be computed for other parameters
θi(i = 2, . . . , 6) respectively.

∂V (xsp, y
s
p, c|Θ, R)

∂θ1
=
∂V (xsp, y

s
p, c|Θ, R)

∂xsp

∂xsp
∂θ1

= xtp

H∑
n

M∑
m

Uc
nm max(0, 1− |ysp − n|)×


0 if |m− xsp|≥ 1

1 if m ≥ xsp
−1 if m ≤ xsp

(3)

It is worth noting that (xtp, y
t
p) are normalized coordinates

in range [−1, 1] so that it can to be scaled with respect to w
and h with start position (w0, h0).

𝑓

Figure 4: Design of the gating network. f denotes the non-
negative gate function (i.e. sigmoid)

Gating Network: The gating network, which serves as a
soft regionlet selector, is used to assgin regionlets with dif-
ferent weight and generate regionlet feature representation.

We design a simple gating network using fully connected
layer with sigmoid activation. The output values of the
gating network are within range of [0, 1]. Given the output
feature maps V (xsp, y

s
p, c|Θ, R) described above, we use a

fully connected layer to generate the same number of out-
put as feature maps V (xsp, y

s
p, c|Θ, R), which is followed by

an activation layer sigmoid to generate the corresponding
weight respectively. The final feature representation is gen-
erated by the product of feature maps V (xsp, y

s
p, c|Θ, R) and

their corresponding weights.

Regionlet Pool Construction Object deformations may oc-
cur at different scales. For instance, deformation could be
caused by different body parts in person detection. Same
number of regionlets (size H ×W ) learned from small se-
lected region have higher extraction density, which may lead
to non-compact regionlet representation. In order to learn a
compact, efficient regionlet representation, we further per-
form the pooling (i.e. max/ave) operation over the feature
maps V (xsp, y

s
p, c|Θ, R) of size (H × W ). We reap two

benefits from the pool construction: (1) Regionlet represen-
tation is compact (small size). (2) Regionlets learned from
different size of selected regions are able to represent such
regions in the same efficient way, thus to handle the object
deformations at different scales.

3.5. Links to Recent Works

Our deep regionlet approach is related to some recent
works in different aspects. In this section, we discuss both
similarities and differences in detail.

Spatial Transform Networks (STN) Jaderberg et
al. [21] first proposed the spatial transformer module to
provide spatial transformation capabilities into a deep neural
network. It only learns one global parametric transformation
(scaling, rotations as well as affine transformation). Such
learning is known to be difficult to apply on semi-dense vi-
sion tasks (e.g., object detection) and the transformation is
on the entire feature map, which means the transformation is
applied identically across all the regions in the feature map.

Our region selection network learns a set of affine trans-
formation and each transformation can be considered as the
localization network in [21]. However, our regionlet learning
is different from image sampling [21] method as it adopts
a region-based parameter transformation and feature wrap-
ping. By learning the transformation locally in the detection
bounding box, our method provide the flexibility of learning
a compact, efficient feature representation of objects with
variable shape and deformable parts.

Deformable Part Model (DPM) [9] and its deep learn-
ing extensions [32, 6]. Deformable Part Model (DPM) [9]
explicitly models spatial deformations of object parts via
latent variables. A root filter is learned to model the global
appearance of the objects, while the part filters are designed
to describe the local parts in the objects. However, DPM is



a shallow model and the training process involves heuristic
choices to select components and part sizes, making end-to-
end training inefficient.

Both works [6, 32] extend the DPM with end-to-end
training in deep CNNs. Motivated by DPM [10] to allow
parts to slightly move around their reference position (par-
tition of the initial regions), they share the similar idea of
learning part offsets3 to model the local element and pool
the features at their corresponding locations after the shift.
While [6, 32] show promising improvement over other deep
learning-based object detectors [15, 36], it still lacks the
flexibility of modeling non-rectangular objects with sharp
shapes and deformable parts.

It is noticeable that the regionlet learning on the selected
region is a generalization of [6, 32]. First, we generalize the
selected region to be non-rectangular by learning the affine
transformation parameters. Such non-rectangular regions
could provide the capabilities of scaling, shifting and rotation
around the original reference region. If we only enforce the
region selection network to learn the shift, our regionlet
learning mechanism would degenerate to similar deformable
RoI pooling as in [6, 32]

Spatial-based RoI pooling [24, 22, 17]. Traditional spa-
tial pyramid pooling [24] performs pooling over hand crafted
regions at different scales. With the help of deep CNNs, [17]
proposes to use spatial pyramid pooling in deep learning-
based object detection. However, as the pooling regions
over image pyramid still need to be carefully designed to
learn the spatial layout of the pooling regions, therefore the
end-to-end training is not well facilitated. In contrast, Our
deep regionlet learning approach learns pooling regions end-
to-end in deep CNNs. Moreover, the region selection step
for learning regionlets accommodates different sizes of the
regions. Hence, we are able to handle object deformations at
different scales without generating the feature pyramid.

4. Experiments

In this section, we present comprehensive experimental
results of the proposed approach on two challenging bench-
mark datasets: PASCAL VOC [8] and MS-COCO [27].
There are in total 20 categories of objects in PASCAL
VOC [8] dataset, which includes rigid objects such as cars
and deformable objects like cats. We follow the common set-
tings used in [36, 3, 5, 15] to draw compelete comparsions.
More specifically, we train our deep model on (1) VOC2007
trainval and (2) union of VOC2007 trainval and
VOC2012 trainval and evaluate on VOC2007 test
set. We also report results on VOC2012 test set with
the model trained on the VOC2007 trainvaltest and
VOC2012 trainval. In addition, we report the results on
the VOC2007 test split for ablation study.

3[6] uses term offset while [32] uses term displacement

MS-COCO [27] is a widely used challenging dataset,
which contains 80 object categories. Following the offi-
cial settings in COCO website4, we use the COCO 2017
trainval split (union of 135k images from train split
and 5k images from val split) for training. We report the
COCO-style average precision (AP) on test-dev 2017
split, which requires evaluation from the MS-COCO server5

for testing.
For the base network, We choose both VGG-16 [39] and

ResNet-101 [18] to demonstrate the generalization of our
approach regardless of which network backbone we use. The
á trous algorithm [29, 31] is adopted in stage 5 of ResNet-
101. Following the suggested settings in [5, 6], we also set
the pooling size to 7 by changing the conv5 stage’s effective
stride from 32 to 16 to increase the feature map resolution.
In addition, the first convolution layer with stride 2 in the
conv5 stage is modified to 1. Both backbone networks are
intialized with the pre-trained ImageNet [18, 23] model.

In the following sections, we report the results of a series
of ablation experiments to understand the behavior of the
proposed deep regionlet approach. Furthermore, we present
comparisons with state-of-the-art detectors [36, 5, 6, 16, 26,
25] on both PASCAL VOC [8] and MS COCO [27] datasets.

4.1. Ablation Study

For a fair comparison, we adopt ResNet-101 as the back-
bone network for ablation studies. We train our model on
the union set of VOC 2007 + 2012 trainval and evaluate
on the VOC2007 test set. The shorter side of image is set
to be 600 pixels, as suggested in [15, 36, 5]. The training is
performed for 60k iterations with effective mini-batch size
4 on 4 GPUs, where the learning rate is set as 10−3 for the
first 40k iterations and 10−4 for the rest 20k iterations. First
we investigate the proposed approach to understand each
component (1) Region selection network, (2) Deep regionlet
learning and (3) Soft regionlet selection by comparing it with
several baselines:

1. Global region selection network (RSN). RSN only se-
lects one global region and it is initialized as identity
transformation (i.e. Θ0 = [1, 0, 0; 0, 1, 0]). This is
equivalent to global regionlet learning within the RoI.

2. Offset-only RSN. We set the region selection network
to only learn the offset by enforcing θ1, θ2, θ4, θ5 not
to change during the training process. In this way, the
region selection network only selects the rectangular re-
gion with offsets to the initialized region. This baseline
is similar to the Deformable RoI Pooling in [6] and
[32].

3. Non-gating selection: deep regionlet without soft selec-
tion. No soft regionlet selection is performed after the

4http://cocodataset.org/#detections-challenge2017
5The updated settings (2017) are different from the previous settings

(2016, 2015) in [3, 26, 6, 5, 26], as it includes different train/val sets.

http://cocodataset.org/#detections-challenge2017


Methods Global RSN Offset-only RSN [6, 32] Non-gating Ours
mAP@0.5(%) 30.27 78.5 81.3 (+2.8) 82.0 (+3.5)

Table 1: Ablation study of each component in deep regionlet approach. Output size H ×W is set to 4× 4 for all the baselines
hhhhhhhhhhhhhhhhh# of Regions

Regionlets Density
2× 2 3× 3 4× 4 5× 5 6× 6

4(2× 2) regions 78.0 79.2 79.9 80.2 80.3
9(3× 3) regions 79.6 80.3 80.9 81.5 81.3
16(4× 4) regions 80.0 81.0 82.0 81.6 80.8

Table 2: Results of ablation studies when a region selection network (RSN) selects different number of regions and regionlets
are learned at different level of density.

regionlet learning. In this case, each regionlet learned
has the same contribution to the final feature represen-
tation.

Results are shown in Table 1. First, when the region selec-
tion network only selects one global region, the region selec-
tion network reduces to the single localization network [21].
In this case, regionlets will be extracted in a global manner.
It is interesting to note that selecting only one region by the
region selection network is able to converge, which is dif-
ferent from [36, 5]. However, the performance is extremely
poor. This is because no discriminative regionlets could
be explicitly learned within the region. More importantly,
compared our approach and offset-only RSN with global
RSN, the results clearly demonstrate that the region selec-
tion network (RSN) is indispensable in the deep regionlet
approach.

Moreover, offset-only RSN could be viewed as similar to
deformable RoI pooling in [6, 32]. These methods all learn
the offset of the rectangle region with respect to its reference
position, which lead to improvement over [36]. However,
non-gating selection outperforms offset-only RSN by 2.8%
with selecting non-rectangular region. The improvement
demonstrates that non-rectangular region selection could
provide more flexibility around the original reference region,
thus could better model the non-rectangular objects with
sharp shapes and deformable parts. Last but not least, by
using the gate function to perform soft regionlet selection,
the performance can be further improved by 0.7%.

Next, we present ablation studies on the following ques-
tions in order to understand more deeply on the region selec-
tion network and regionlet learning module:

1. How many regions should we learn by region selection
network?

2. How many regionlets should we learn in one selected
region (density is of size H ×W )?

How many regions should we learn by region selection
network? We investigate how the detection performance
varies when different number of regions are selected by the

region selection network. All the regions are initialized
as described in Section 3.3 without any overlap between
regions. Without loss of generality, we report results for
4(2 × 2), 9(3 × 3) and 16(4 × 4) regions in Table 2. We
observe that the mean AP increases when the number of
selected regions is increased from 4(2× 2) to 9(3× 3) for
fixed regionlets learning number, but gets saturated with
16(4× 4) selected regions.

How many regionlets should we learn in one selected re-
gion? Next, we investigate how the detection performance
varies when different number of regionlets are learned in
one selected region by varying H and W . Without loss of
generality, we set H = W throughout our experiments and
vary the H value from 2 to 6. In Table 2, we report results
when we set the number of regionlets at 4(2× 2), 9(3× 3),
16(4× 4), 25(5× 5), 36(6× 6) before the regionlet pooling
construction.

First, it is observed that increasing the number of re-
gionlets from 4(2 × 2) to 25(5 × 5) results in improved
performance. As more regionlets are learned from one re-
gion, more spatial and shape information from objects could
be learned. The proposed approach could achieve the best
performance when regionlets are extracted at 16(4× 4) or
25(5 × 5) density level. It is also interesting to note that
when the density increases from 25(5 × 5) to 36(6 × 6),
the performance degrades slightly. When the regionlets are
learned at a very high density level, some redundant spa-
tial information may be learned without being useful for
detection, thus affecting the region proposal-based decision
to be made. Throughout all the experiments in the paper,
we report the results from 16 selected regions from region
selection network and set output size H ×W = 4× 4.

4.2. Experiments on PASCAL VOC

In this section, we compare our results with tradi-
tional regionlet method [41] and several state-of-the-art
deep learning-based object detectors as follows: Faster
R-CNN [36], SSD [28], R-FCN [5], soft-NMS [3], DP-



Methods training data mAP@0.5(%) training data mAP@0.5(%)
Regionlet [41] 07 41.7 07 + 12 N/A

Faster R-CNN [36] 07 70.0 07 + 12 73.2
R-FCN [5] 07 69.6 07 + 12 76.6

SSD 512 [28] 07 71.6 07 + 12 76.8
Soft-NMS [3] 07 71.1 07 + 12 76.8

Ours 07 73.0 07 + 12 79.2
Ours with soft-NMS 07 73.8 07 + 12 80.1

Table 3: Detection results on PASCAL VOC using VGG16 as backbone architecture. Training data: "07": VOC2007
trainval, "07 + 12": union set of VOC2007 and VOC2012 trainval. With soft-NMS denotes we apply the soft-NMS
in the test stage.

FCN [32] and DCN [6].
We follow the standard settings as in [36, 5, 3, 6] and re-

port mean average precision (mAP) scores using IoU thresh-
olds at 0.5 and 0.7. For the first experiment training from
VOC2007 trainval, we start learning rate at 10−3 for
the first 40k iterations, then we decrease it to 10−4 for the
rest 20k iterations with single GPU. Next, due to more train-
ing data, increasing the number of iteration is needed on
the union of VOC2007 and VOC2012 trainval. We per-
form the same training process as described in Section 4.1.
Moreover, we use 300 RoIs at test stage from a single-scale
image testing with setting the image shorter side to be 600.
For a fair comparison, we do not deploy the multi-scale
training/testing or online hard example mining(OHEM) [38],
although it is shown in [3, 6] that such enhancements could
lead to the performance boost.

The results on VOC2007 test using VGG16 [39] back-
bone are shown in Table 3. We first compare with traditional
regionlet method [41] and several state-of-the-art object de-
tectors [36, 28, 3] when training from small size dataset
(VOC2007 trainval). Next, we evaluate our method as
we increase the training dataset (union set of VOC 2007 and
2012 trainval). With the power of deep CNNs, the deep
regionlet approach has significantly improved the detection
performance over the traditional regionlet method [41]. We
also observe that more data always helps. Moreover, it is en-
couraging that soft-NMS [3] is only applied in the test stage
without modification in the training stage, which could di-
rectly improve over [36] by 1.1%. In summary, our method
consistently outperform all the compared methods and the
performance could be further improved if we replace NMS
with its better variant soft-NMS [3].

Next, we change the network backbone from VGG16 [39]
to ResNet-101 [18] and present corresponding results in
Table 4. In addition, we also compare with DCN [6] and
DP-FCN [32].

First, compared to the performance in Table 3 using
VGG16 [39] network, the mAP can be significantly in-
creased by using deeper networks like ResNet-101 [18]. Sec-
ond, comparing with DP-FCN [32] and Deformable ROI

Methods mAP@0.5 / @0.7(%)
Faster R-CNN [36] 78.1 / 62.1

SSD [28] 76.8 / N/A
DP-FCN [32] 78.1 / N/A

ION [2] 79.4 / N/A
LocNet [13] 78.4 / N/A

Deformable ConvNet [6] 78.6 / 63.3
Deformale ROI Pooling [6] 78.3 / 66.6

Deformable ConvNet + ROI Pooling [6] 79.3 / 66.9
Ours 82.0 / 67.0

Ours with soft-NMS 83.1 / 67.9

Table 4: Detection results on PASCAL VOC using ResNet-
101 [18] as backbone acchitecture. Training data: union
set of VOC 2007 and 2012 trainval. With soft-NMS
denotes we apply the soft-NMS in the test stage.

Pooling in DCN [6], we outperform these two methods by
3.9% and 2.7% respectively. This provides the empirical
support that our deep regionlet learning method could be
treated as a generalization of [6, 32], as discussed in Sec-
tion 3.5. In addition, the results demonstrate that selecting
non-rectangular regions from our method provide more ca-
pabilities including scaling, shifting and rotation to learn the
feature representations. In summary, without bells and whis-
tles, our method achieves state-of-the-art performance on
object detection task when using ResNet-101 as backbone
network.

Results evaluated on VOC2012 test are shown in Ta-
ble 5. We follow the same experimental settings as in [5, 36,
11, 28, 32] and train our model using VOC"07++12", which
consists of VOC2007 trainvaltest and VOC2012
trainval set. It can be seen that our method outperform
all the other competing methods. In particular, we outper-
form DP-FCN [32], which further proves the generalization
of our method over [32].

4.3. Experiments on MS COCO
In this section, we evaluate the proposed deep region-

let approach on MS COCO [27] dataset and compare with
other state-of-the-art object detectors: Faster R-CNN [36],



Methods FRCN [36] YOLO9000 [35] FRCN OHEM DSSD [11] SSD? [28]
mAP@0.5(%) 73.8 73.4 76.3 76.3 78.5

Methods ION [2] R-FCN [5] DP-FCN [32] Ours Ours with soft-NMS
mAP@0.5(%) 76.4 77.6 79.5 80.4 81.2

Table 5: Detection results on VOC2012 test set using training data "07++12": the union set of 2007 trainvaltest and 2012
trainval. SSD? denotes the new data augmentation

Methods Training Data mmAP 0.5:0.95 mAP @0.5 mAP small mAP medium mAP large
Faster R-CNN [36] trainval 24.4 45.7 7.9 26.6 37.2

SSD?[28] trainval 31.2 50.4 10.2 34.5 49.8
DSSD [11] trainval 33.2 53.5 13.0 35.4 51.1
R-FCN [5] trainval 30.8 52.6 11.8 33.9 44.8

Deformable F-RCNN [6] trainval 33.1 50.3 11.6 34.9 51.2
Deformable R-FCN [6] trainval 34.5 55.0 14.0 37.7 50.3

Mask R-CNN [16] trainval 37.3 59.6 19.8 40.2 48.8
RetinaNet500 [26] trainval 34.4 53.1 14.7 38.5 49.1

Ours trainval 39.3 59.8 21.7 43.7 50.9

Table 6: Object detection results on MS COCO 2017 test-dev using ResNet-101 [18] as backbone acchitecture. Training
data: union set of 2017 train and 2017 val set. SSD? denotes the new data augmentation

SSD [28], R-FCN [5], Deformable F-RCNN/R-FCN [6],
Mask R-CNN [16], RetinaNet [26].

We adopt ResNet-101 [18] as the backbone architecture
of all the methods for a fair comparison. Following the
settings in [16, 6, 26, 5], we set the shorter edge of the
image to 800 pixels. The training is performed for 280k
iterations with effective mini-batch size 8 on 8 GPUs. We
first train the model with 10−3 learning rate for the first
160k iterations, followed by learning rate 10−4 and 10−5 for
another 80k iterations and the rest 40k iterations. 5 scales
and 3 aspect ratios are deployed for anchors. We report
results using either the released models or the code from the
original authors. It is noted that we only deploy single-scale
image training (no scale jitter) without the iterative bounding
box average throughout all the experiments, although these
enhancements could further boost performance (mmAP).

Table 6 shows the results on 2017 test-dev set6, which
contains 20, 288 images. Compared with the baseline meth-
ods Faster R-CNN [36], R-FCN [5] and SSD [28], both
Deformable F-RCNN/R-FCN [6] and our method provide
huge improvements over [36, 5, 28] (+3.7% and +8.5%).
Moreover, it can be seen that our method outperform De-
formable F-RCNN/R-FCN [6] by wide margin(∼4%). This
observation further supports that our deep regionlet learning
module could be treated as a generalization of [6, 32], as
discussed in Section 3.5. It is also noted that the most re-
cent state-of-the-art object detectors Mask R-CNN7 [16] also

6MS COCO server does not accept 2016 and 2015 test-dev evaluation.
As a result, we are not able to report results on 2016, 2015 test-dev set.

7Note [16] reported best result using ResNeXt-101-FPN [43], we only
compare the results in [16] using ResNet-101 [18] backbone for fair com-
parison.

utilized multi-task training with segmentation labels and in-
network feature pyramid (FPN), we still outperform [16]
by 2.0%. In addition, the main contribution focal loss
in [26], which overcomes the obstacle caused by the im-
balance of positive/nagetive samples, is complimentary to
our method. We believe it can be applied in our method
to further boost the performance. In summary, compared
with Mask R-CNN [16] and RetinaNet8 [26], our method
achieves state-of-the-art performance on MS COCO when
using ResNet-101 as a backbone network.

5. Conclusion
In this paper, we present a novel deep regionlet-based

approach for object detection. The proposed region selection
network can select non-rectangular region within the de-
tection bounding box, and hence an object with rigid shape
and deformable parts can be better modeled. We also design
the deep regionlet learning module so that both the selected
regions and the regionlets can be learned simultaneously.
Moreover, the proposed system can be trained in a fully
end-to-end manner without additional efforts. Finally, we
extensively evaluate our approach on two detection bench-
marks for generic object detection. Experimental results
shows competitive performance over state-of-the-art.
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