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Abstract
In this paper, we consider statistical learning with
AUC (area under ROC curve) maximization in
the classical stochastic setting where one random
data drawn from an unknown distribution is re-
vealed at each iteration for updating the model.
Although consistent convex surrogate losses for
AUC maximization have been proposed to make
the problem tractable, it remains an challenging
problem to design fast optimization algorithms in
the classical stochastic setting since the convex
surrogate loss depends on random pairs of exam-
ples from positive and negative classes. Build-
ing on a saddle point formulation for a consistent
square loss, this paper proposes a novel stochas-
tic algorithm to improve the standard O(1/

√
n)

convergence rate to Õ(1/n) convergence rate
without strong convexity assumption or any fa-
vorable statistical assumptions (e.g., low noise),
where n is the number of random samples. To the
best of our knowledge, this is the first stochas-
tic algorithm for AUC maximization with a sta-
tistical convergence rate as fast as O(1/n) up
to a logarithmic factor. Extensive experiments
on eight large-scale benchmark data sets demon-
strate the superior performance of the proposed
algorithm comparing with existing stochastic or
online algorithms for AUC maximization.

1. Introduction
Area under ROC curve (AUC) (Metz, 1978; Hanley & Mc-
Neil, 1982; 1983) is a commonly used metric for evaluating
the performance of a classifier. ROC (receiver operating
characteristic) curve is the "true positive rate -
false positive rate" curve, and AUC represents
the probability that examples in positive class are scored
higher than those in negative class (Hanley & McNeil,
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1982). Compared with misclassification rate, AUC is more
favorable in the applications with imbalanced datasets and
in which the real-valued classifier is used for ranking.
However, the algorithms designed to minimize the mis-
classification error rate may not lead to maximization of
AUC (Cortes & Mohri, 2004).

In a batch learning setting where all training data is given
beforehand, one may formulate AUC maximization as a
convex empirical optimization problem based on the train-
ing data using a convex surrogate loss. The resulting op-
timization problem can be solved by employing existing
algorithms (Herschtal & Raskutti, 2004; Cortes & Mohri,
2004; Ferri et al., 2011). However, such an approach has
two limitations: (i) it is not applicable to many applications
in which a random data is received in a sequential manner
(e.g., online advertisement); (ii) little is known about the
statistical convergence rate of the empirical maximizer to
the true maximizer due to the i.i.d assumption of pairwise
data does not hold. Therefore, a stochastic algorithm with
a provable convergence rate in the classical stochastic set-
ting for minimizing an expected convex surrogate loss for
AUC maximization is desirable for addressing these two
limitations. It is also useful for tackling large-scale data by
one pass of training data.

Nevertheless, the pairwise nature in the definition of AUC
makes it challenging to design algorithms suitable for the
classical stochastic setting. To address this challenge, sev-
eral online and stochastic algorithms have been developed
based on convex surrogate loss (Zhao et al., 2011; Gao
et al., 2013; Ying et al., 2016). An interesting observation
in (Ying et al., 2016) is that the AUC maximization using
a consistent square loss is equivalent to a stochastic min-
max saddle point problem, for which a primal-dual style
of stochastic gradient algorithm can be employed to yield
an Õ(1/

√
n) convergence rate for minimizing an expected

square loss, where n is the number of samples. How to
improve the convergence rate of stochastic optimization of
AUC remains an open problem though.

Fast rate such as O(1/n) of stochastic algorithms has been
established for expected convex risk minimization in lit-
erature (Hazan & Kale, 2011a; Srebro et al., 2010; Bach
& Moulines, 2013). However, these studies either impose
strong assumptions about the problem (e.g., strong convex-
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ity assumption, low-noise assumption, etc.), and/or their
analysis is limited to certain settings that is not applica-
ble to AUC maximization. Therefore, a stochastic algo-
rithm with a provable fast rate asO(1/n) without imposing
strong assumptions should be considered as a significant
contribution for AUC maximization.

The proposed algorithm referred to as FSAUC is a Fast
Stochastic algorithm for true AUC maximization. It is
based on the min-max saddle point formulation as observed
in (Ying et al., 2016). However, different from (Ying
et al., 2016), we develop a novel multi-stage scheme for
running primal-dual stochastic gradient method with adap-
tively changing parameters and initial solutions for both
primal and dual variables. The adaptive multi-stage scheme
not only leverages the primal solution from previous stages
but also utilizes the empirical estimation of feature vectors
of examples from both positive and negative classes for ini-
tializing the dual variables. The convergence analysis of
the proposed algorithm hinges on a quadratic growth prop-
erty of a reformulated AUC objective and a novel synthe-
sis of the adaptive scheme and the convergence result of
primal-dual stochastic gradient method. To summarize, the
major contributions of this work are:

• We propose a novel fast stochastic algorithm that can
be run in the classical stochastic setting for maximiz-
ing AUC with a known number of total samples n. We
establish an Õ(1/n) 1 convergence rate for the pro-
posed algorithm, where n is the total number of sam-
ples. This is the first Õ(1/n) convergence result for
stochastic AUC optimization.

• We evaluate the proposed algorithm on eight large-
scale benchmark datasets. The results show that our
algorithm significantly outperforms two state-of-the-
art stochastic/online AUC methods, namely SOLAM
algorithm (Ying et al., 2016) and OPAUC algorithm
(Gao et al., 2013).

2. Related Work
(Zhao et al., 2011) is probably the first work on online max-
imization of AUC. In order not to store all received positive
and negative examples, they proposed to use reservoir sam-
pling to maintain a buffer of positive and negative exam-
ples. At each iteration, they run gradient update based on
an online empirical version of AUC defined on the buffered
data to update the models. A regret bound was established
with the cost function at each iteration t defined based on
the example received at the t-th iteration and all data in the
buffer. Even with the optimal buffer size, their regret bound
is worse than

√
n. Gao et al. (2013) proposed another on-

line algorithm without resorting to the reservoir sampling.

1The Õ(·) notation hides logarithmic factors.

Their algorithm hinges on the observation that if a consis-
tent square loss is used, the gradient of an online empir-
ical version of AUC can be computed based on first and
second order statistics of received data. Hence, their algo-
rithm needs to maintain a covariance matrix of received ex-
amples, which renders it not practical for high-dimensional
data. Although a randomized version is proposed for main-
taining a low rank version of the covariance matrix, it still
has considerable computational overhead. In terms of guar-
antee, they established a regret bound in the order of

√
T

for general case and a possible O(1) regret bound under
the low-noise condition. However, these regret bounds do
not directly imply a convergence rate for statistical AUC
maximization. The reason is that the data that define each
cost function are not independent. The stochastic algorithm
proposed in a recent work (Ying et al., 2016) is the first
with a convergence guarantee for statistical AUC optimiza-
tion and is also the first one without storing any historical
examples or their covariance matrix. As aforementioned,
their algorithm is based on a novel min-max saddle point
formulation of AUC maximization and has a convergence
rate of Õ(1/

√
n).

Fast rate of stochastic optimization such as O(1/n) has
been studied for standard classification and regression
problems under some conditions. For example, Hazan &
Kale (2011a) proposed a method with an O(1/n) conver-
gence rate under a (weak) strong convexity assumption.
Their algorithm requires knowing the strong convexity pa-
rameter. For statistical learning problems, Srebro et al.
(2010) established an O(1/n) convergence rate for smooth
loss functions under low-noise assumption (e.g., the op-
timal risk value is close to zero). However, their algo-
rithm requires knowing a good estimation of the optimal
risk value. Bach & Moulines (2013) established the first
O(1/n) convergence rate of stochastic algorithms for min-
imizing expected square loss for regression and expected
logistic loss for classification without the strong convex-
ity assumption. However, all these algorithms and analysis
are not applicable to the AUC maximization in the classical
stochastic setting.

Finally, we note that the multi-stage scheme of the pro-
posed algorithm is similar to that developed in (Hazan &
Kale, 2011b; Ghadimi & Lan, 2013; Juditsky et al., 2014;
Xu et al., 2017) for minimizing strongly or uniformly con-
vex functions or problems with error bound conditions.
However, the differences between the proposed work and
these works are that (i) our development is based on primal
dual stochastic method for solving a stochastic saddle point
problem of AUC maximization with particular treatment
of dual variables; while their algorithms are for solving
stochastic convex minimization problems; (ii) we do not re-
quire strong convexity assumption with known parameters
as in (Hazan & Kale, 2011b; Ghadimi & Lan, 2013); (iii)
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we do not assume uniform strong convexity assumption as
in (Juditsky et al., 2014). Instead, we prove a quadratic
growth condition for the studied problem that is a special
case of error bound condition studied in (Xu et al., 2017).
However, the stochastic algorithms proposed in (Xu et al.,
2017) require a target accuracy level and cannot be applied
to one pass learning setting for large-scale data.

3. Algorithm and Main Result
3.1. Preliminaries and Notations

Let z = (x, y) ∼ P denote a random data following an
unknown distribution P , where x ∈ X ⊆ Rd represents
the feature vector and y ∈ {1,−1} represents the label.
Denote by Z = X × {1,−1} and by p = Pr(y = 1) =
Ey[I[y=1]], where I is an indicator function. We assume that
supx∈X ‖x‖2 ≤ κ. Let x̄ ∈ Rd+2 denote an augmented
feature vector with the last two components being 0, and
let B(x0, r) = {x : ‖x− x0‖2 ≤ r} be an `2-ball centered
at x0 with a radius r.

Given a score function h : Rd → R, the AUC at the pop-
ulation level (referred to as the true AUC in this paper) is
defined as:

AUC(h) = Pr(h(x) ≥ h(x′)|y = 1, y′ = −1),

where z = (x, y) and z′ = (x′, y) are a pair of random
data. The AUC maximization problem is to find an opti-
mal score function in a hypothesis class such that AUC is
maximized. Since the problem is non-convex, it is usually
solved by using consistent convex surrogate loss. A com-
mon choice used by previous studies (Ying et al., 2016; Gao
et al., 2013) is the square loss. In this paper, we consider
learning a linear function h(x) = w>x to maximize the
AUC using a square loss, i.e.,

min
w∈Rd

L(w) , Ez,z′ [(1−w>(x− x′))2|y = 1, y′ = −1].

(1)
Since the loss function depends on a random pair of data
making it difficult to handle in the classical stochastic set-
ting, a solution is to cast the above problem into an equiva-
lent saddle point problem (Ying et al., 2016):

min
w∈Rd

(a,b)∈R2

max
α∈R
{f(w, a, b, α) := Ez[F (w, a, b, α; z)]},

where

F (w, a, b, α; z) = (1− p)(w>x− a)2I[y=1]

+ p(w>x− b)2I[y=−1] − p(1− p)α2

+ 2(1 + α)(pw>xI[y=−1] − (1− p)w>xI[y=1]).

Assuming the optimal solution w∗ sits in a bounded do-
main such that ‖w∗‖1 ≤ R, we can restrict the primal and

dual variables to constrained domains Ω1 = {(w, a, b) :
‖w‖1 ≤ R, |a| ≤ Rκ, |b| ≤ Rκ},Ω2 = {α ∈ R : |α| ≤
2Rκ}, i.e.,

min
(w,a,b)∈Ω1

max
α∈Ω2

{f(w, a, b, α) := Ez[F (w, a, b, α; z)]}.

(2)
Please note that adding the `1-ball constraint on w does not
restrict the performance of the learned model because (i) if
R is large enough such that the optimal solution w∗ to (1)
satisfies ‖w∗‖1 ≤ R, then w∗ is also the optimal solution
to (2) 2; (ii) for a finite number of samples, the constraint
can serve as regularization for improving the generalization
performance. We use `1-ball constraint because it allows us
to show that the proposed stochastic optimization algorithm
has an convergence rate of Õ(1/n).

Next, we will present the proposed algorithm and its con-
vergence results. We will also provide a convergence anal-
ysis on a core component of the proposed algorithm.

3.2. Algorithm and its Convergence

The proposed algorithm is presented in Algorithm 1, which
is referred to as FSAUC. The parameteres R0, G, D0, β0

will be explained shortly. The algorithm divides the up-
dates into m stages and each stage has bn/mc updates.
Each stage of FSAUC runs a primal dual style stochastic
gradient (PDSG) method outlined in Algorithm 2, which
is similar to that in (Ying et al., 2016) except for three
differences: (i) the step size is given as a constant for
each call of PDSG; (ii) each update of the primal variable
v = (w>, a, b)> and the dual variable α is projected into
an intersection of their constrained domain and an `2 ball
centered at the initial solution v1, α1; (iii) upon receiving
a random data zt, the variables Â±, T±, p̂ are updated ac-
cording to Algorithm 3, where T± represent the number of
positive/negative examples received so far; Â± represents
the cumulative (augmented) feature vector for the positive
class and negative class; and p̂ represents the estimated pos-
itive ratio based on the received examples. The parameters
for each call of PDSG is adaptively changing, including the
initial solutions v1, α1, the radius of `2 balls for the primal
variables and the dual variables, and the step size η.

The initial parameter R0 is a bound of Euclidean distance
from v̂0 to the optimal set of (2) in terms of v. The initial
parameter D0 is for setting a constrained domain of the
dual variable. The initial parameter β0 is for setting the
initial step size. The parameter G is an upper bound of
Euclidean norms of G(u, z), Ĝt(u, zt), g(u) for any u ∈
Ω1 × Ω2 and z, zt ∈ Z , which are defined in (3). The
function F̂t at the line 5 and line 6 of the Algorithm 2 given

2This can be shown that if ‖w∗‖1 ≤ 1, then the optimal so-
lutions to a, b, α satisfy the prescribed bounds in light of their
closed-form solutions depending on w∗.
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Algorithm 1 FSAUC
1: Set m = b 1

2 log2
2n

log2 n
c − 1, n0 = bn/mc, R0 =

2
√

1 + 2κ2R, G > max((1 + 4κ)κ(R+ 1), 2κ(2R+
1 + 2Rκ), 2κ(4κR + 11R + 1)), β0 = (1 + 8κ2),
D0 = 2

√
2κR0

2: Initialize v̂0 = 0 ∈ Rd+2, α̂0 = 0,
3: for k = 1, . . . ,m do

4: Set ηk =

√
βk−1√
3n0G

Rk−1

5: Call PDSG to obtain (v̂k, α̂k, βk, Rk, Dk) =
PDSG(v̂k−1, α̂k−1, Rk−1, Dk−1, n0, ηk)

6: end for
7: return v̂m

by

F̂t(v, α, zt) = (1− p̂)(w>xt − a)2I[yt=1]

+ p̂(w>xt − b)2I[yt=−1] − p̂(1− p̂)α2

+ 2(1 + α)(p̂w>xtI[yt=−1] − (1− p̂)w>xI[yt=1])

is an estimation of F (v, α, zt) using the current estimation
p̂ of p. It is worth mentioning that the line 5 and line 6 of
the Algorithm 2 need to execute a projection onto the in-
tersection of two convex sets. We can use the alternating
projection algorithm to generate a sequence which can lin-
early converges to the desired point. Actually it is easy to
show that the two sets in our case are boundedly linearly
regular (Definition 3.11 of (Bauschke & Borwein, 1993))
and the linear convergence is guaranteed by the Corollary
3.14 of (Bauschke & Borwein, 1993).

Finally, the convergence rate of FSAUC is presented in the
following theorem.

Theorem 1. Given δ ∈ (0, 1), assume n is sufficiently
large such that n > max(100,m

32 ln( 12
δ )

(min(p,1−p))2 ). Then with
probability at least 1− δ,

max
α∈Ω2

f(v̂m, α)− min
v∈Ω1

max
α∈Ω2

f(v, α) ≤ Õ
(

ln( 1
δ )

n

)
,

where Õ(·) suppresses logarithmic factor of log(n) and
some constants of the problem independent of n.

Remark: In practice, we can maintain global variables
Â+, Â−, p̂ and use them for updating parameters and ini-
tializing dual variables. The local versions used in Algo-
rithm 2 are just for simplicity of analysis.

The above theorem implies the convergence of AUC maxi-
mization in terms of the square loss.

Corollary 1. Under the same condition as in Theorem 1,

Algorithm 2 PDSG(v1, α1, r,D, T, η)

1: Initialize variables Â+ ∈ Rd+2, Â− ∈ Rd+2,
T+, T−, p̂ ∈ R as zeros

2: for t = 1, . . . , T do
3: Receive a sample zt = (xt, yt)

4: Update Â±, T±, p̂ using the data zt
5: vt+1 = ΠΩ1∩B(v1,r)(vt − η∂vF̂t(vt, αt, zt))
6: αt+1 = ΠΩ2∩B(α1,D)(αt + η∂αF̂t(vt, αt, zt))
7: end for
8: Compute v̄T =

∑T
t=1 vt
T and α̂ = ( Â−T− −

Â+

T+
)>v̄T

9: Let r = r/2
10: Update β,D according to Lemma 1
11: return (v̄T , α̂, β, r,D)

Algorithm 3 Update Â±, T±, p̂ given a data (xt, yt)

1: Â+ = Â+ + I[yt=1]x̄t

2: Â− = Â− + I[yt=−1]x̄t
3: p̂ = p̂+ I[yt=1]

4: T+ = T+ + I[yt=1]

5: T− = T− + I[yt=−1]

6: p̂ = T+/(T+ + T−)

with probability at least 1− δ,

L(ŵm)− min
‖w‖1≤R

L(w) ≤ Õ
(

ln( 1
δ )

n

)
.

4. Convergence Analysis
This section is devoted to convergence analysis. Due to
limitation of space, we present detailed analysis for a key
lemma. More details about the proof of main Theorem can
be found in the supplement.

Before analysis, we first give some notations that will be
frequently used in this section.

v = (w>, a, b)> ∈ Rd+2

u = (v>, α)> ∈ Rd+3

G(u, z) = (∇vF (v, α; z),−∇αF (v, α; z))

Ĝt(u, zt) = (∇vF̂t(v, α; zt),−∇αF̂t(v, α; zt))

g(u) = (∇vf(v, α),−∇αf(v, α))

(3)

Lemma 1. For each call of Algorithm 2, we update D, β
according to

D = 2
√
2κr +

4
√
2κ
(
2 +

√
2 ln( 12

δ
)
)
(1 + 2κ)R√

(min(p̂, 1− p̂)T −
√

2T ln( 12
δ
))

,
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and

β = (1 + 8κ2) +
32κ2(1 + 2κ)2

(
2 +

√
2 ln( 12

δ
)
)2

min(p̂, 1− p̂)−
√

2 ln( 12
δ
)/(T )

,

where p̂ is an estimation of p. Suppose ‖v1 − v∗‖2 ≤ r,
where v∗ ∈ Ω1 is the optimal solution closest to v1, and
T > max

(
R2

r2 ,
32 ln( 12

δ )

(min(p,1−p))2

)
, then

max
α∈Ω2

f(v̄T , α)− min
v∈Ω1

max
α∈Ω2

f(v, α)

≤

(
2
√

3γ1 +
√

ln( 6T
δ )γ2

)
rG

√
T

,

(4)

where γ1 = (1 + 8κ2) +
32κ2(1+2κ)2

(
2+
√

2 ln( 12
δ )
)2

min(p,1−p)/2 , γ2 =

16

(
1 + 2

√
2κ+

8κ
(

2+
√

2 ln ( 12
δ )
)

(1+2κ)√
min(p,1−p)/2

)
.

Remark: When n is sufficiently large as stated in the main
theorem, then

√
log(2/δ)/T < min(p̂, 1 − p̂) by Hoeffd-

ing’s inequality since p̂ is estimated using n0 examples.
The above result implies that the proposed algorithm has
at least an O(1/

√
n) convergence rate.

Based on the above lemma, Algorithm 1 uses a geometri-
cally decreasing radius r in order to achieve a faster con-
vergence. By further utilizing the following property we
can prove the main theorem.

Lemma 2. f1(v) = max
α∈Ω2

f(v, α) restricted on the set Ω1

satisfies a quadratic growth condition, i.e., for any v ∈ Ω1,
there exists c > 0 such that

‖v − v∗‖2 ≤ c(f1(v)− min
v∈Ω1

f1(v))1/2,

where v∗ is the optimal solution to minv∈Ω1 f1(v) that is
closest to v.

Remark: It is notable that the proposed algorithm FSAUC
does not require the value of c that is difficult to compute.

4.1. Proof of Lemma 1

To prove this lemma, we need the following lemma, whose
proof is included in the supplement.

Lemma 3. Let Â = Â+/T+ − Â−/T− and and A =
((E(x|y = −1) − E(x|y = 1))>, 0, 0)>. After the k-th
call of Algorithm 2 with k ≥ 1, with probability 1 − δ

3 we
have

‖Â−A‖2 ≤
4κ
(

2 +
√

2 ln(12
δ )
)

√
ξT

,

where ξ ≡ min(p̂, 1− p̂)−
√

2 ln( 12
δ )

T .

Proof of Lemma 1. By the setting of G, we have

max
t,ut,zt

(
‖g(ut)‖2, ‖G(ut, zt)‖2, ‖Ĝt(ut, zt)‖2

)
≤ G.

Define

α∗,T = arg maxα f(v̄T , α) = w̄>T [E(x|y = −1) −
E(x|y = 1)]. Following standard analysis of primal-dual
update (e.g., see inequality 17 in (Ying et al., 2016)), we
have

max
α∈Ω2

f(v̄T , α)− min
v∈Ω1

max
α∈Ω2

f(v, α)

≤ f(v̄T , α∗,T )− f(v∗, ᾱT )

≤ ‖v1 − v∗‖22
2ηT

+
‖α1 − α∗,T ‖22

2ηT
+ ηG2

+

∑T
t=1(ut − u∗)

>(g(ut)−G(ut, zt))

T

+

∑T
t=1(ut − u∗)

>(G(ut, zt)− Ĝt(ut, zt))
T

= I + II + III + IV + V

where v∗ is the optimal solution closest to v1 of
(2), and the first inequality follows from the fact that
minv∈Ω1

maxα∈Ω2
f(v, α) ≥ f(v∗, ᾱT ).

Now we bound the five terms respectively. It is obvious
that I =

‖v1−v∗‖22
2ηT ≤ r20

2ηT .

Let Âk−1, p̂k−1, ξk−1 be counterparts of that in Lemma 3
estimated from data in (k − 1)-stage. According to the
setting of α in Algorithm 1, for the first call of Algorithm 2
we have α1 = Av1 due to v̂0 = 0, and for k-th call of
Algorithm 2 with k > 1 we have α1 = Âk−1v1. Then for
the first call of Algorithm 2, we have II =

‖Av1−Av̄T ‖22
2ηT ,

and for other calls we have

II =
‖Âk−1v1 −Av̄T ‖22

2ηT

≤ 2‖Âk−1(v1 − v̄T )‖22 + 2‖(Âk−1 −A)v̄T ‖22
2ηT

.

By Cauchy-Schwartz inequality, we have

max{‖A(v1 − v̄T )‖22, ‖Âk−1(v1 − v̄T )‖22}
≤ 4κ2‖v1 − v̄T ‖22,

‖(Âk−1 −A)v̄T ‖22 ≤ ‖Âk−1 −A‖22‖v̄T ‖22.

By combining the result in Lemma 3, we have with proba-
bility 1− δ/3

II ≤ 8κ2r2

2ηT
+ Ik>1

32κ2
(

2 +
√

2 ln( 12
δ )
)2

(1 + 2κ)2R2

2ξk−1ηT 2
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Similarly, we can bound |α1−α∗,T | by 2
√

2κr for the first
call, and

|α1 − α∗,T | ≤
4
√

2κ
(

2 +
√

2 ln( 12
δ )
)

(1 + 2κ)r√
(min(p̂k−1, 1− p̂k−1)n0 −

√
2n0 ln( 12

δ ))

+ 2
√

2κr

for k-th call with k > 1. According to initial value of D
and r for each call, we have |α1 − α∗,T | ≤ D.

Next, we can bound the last two terms similarly to (Ying
et al., 2016). Define

ũ1 = u1 ∈ (Ω1 ∩ B(v1, r))× (Ω2 ∩ B(α1, D)),

ũt+1 = Π (Ω1∩B(v1,r))
×(Ω2∩B(α1,D))

(ũt − η(g(ut)−G(ut, zt))),

then we have with probability at least 1− δ
3 ,

T∑
t=1

η(ũt − u∗)
>(g(ut)−G(ut, zt))

≤ ‖ũ1 − u∗‖22
2

+
1

2

T∑
t=1

η2‖g(ut)−G(ut, zt)‖22

≤ ‖v1 − v∗‖22 + ‖α1 − α∗,T ‖22
2

+
1

2
Tη24G2

≤ r2 +D2

2
+ 2η2G2T

Note that both ut and ũt are measurable with respect to
Ft = {z1, . . . , zt−1}, and {St : η(ut − ũt)

>(g(ut) −
G(ut)) : t = 1, . . . T} is a martingale difference sequence,
and for any t, we have |η(ut− ũt)

>(g(ut)−G(ut, zt))| ≤
2ηG‖ut − ũt‖2 ≤ 2ηG(2r + 2D). Then by Azuma-
Hoeffding’s inequality, we have with probability at least
1− δ

3 ,

T∑
t=1

η(ut − ũt)
>(g(ut)−G(ut, zt))

≤ 2ηG(2r + 2D)

√
2T ln(

3

δ
)

(5)

Hence, with probability 1− 2δ
3 , we have

IV ≤

(1 + 8κ2)r2

2ηT
+

16κ2
(

2 +
√

2 ln(12
δ )
)2

(1 + 2κ)2R2

ηξk−1T 2

+ 2ηG2 +
4G(r +D)

√
2 ln( 3

δ )
√
T

.

Next we bound V. According to Lemma 3 of (Ying et al.,
2016),

V ≤
T∑
t=1

(
sup
t

(‖ut − u1‖2 + ‖u1 − u∗‖2)·

sup
u∈Ω,z∈Z

‖Ĝt(u, z)−G(u, z)‖2
)
/T

≤
4(r +D)× 2κ(4κR+ 11R+ 1)

∑T
t=1

√
ln( 6T

δ )

t

T

≤
8(r +D)G

√
ln( 6T

δ )
√
T

,

where the last inequality holds since
∑T
t=1

1√
t
≤ 2
√
T .

When T ≥ R2

r2 , by union bound, with probability at least
1− δ we have

max
α∈Ω2

f(v̄T , α)− min
v∈Ω1

max
α∈Ω2

f(v, α)

≤ ζ1r
2

ηT
+ 3ηG2 +

ζ2rG
√

ln( 6T
δ )

√
T

,

where ζ1 = (1 + 8κ2) + I[k>1]

32κ2(1+2κ)2
(

2+
√

2 ln( 12
δ )
)2

ξk−1
,

ζ2 = 16

(
1 + 2

√
2κ+ I[k>1]

8κ
(

2+
√

2 ln ( 12
δ )
)

(1+2κ)√
ξk−1

)
,

ξk−1 = min (p̂k−1, 1− p̂k−1)−
√

2 ln( 12
δ )

T .

Moreover, by choosing η =
√
ζ1r√

3G
√
T

, we have with proba-
bility at least 1− δ, we have

max
α∈Ω2

f(v̄T , α)− min
v∈Ω1

max
α∈Ω2

f(v, α)

≤

(
2
√

3ζ1 +
√

ln( 6T
δ )ζ2

)
r0G

√
T

.

By Hoeffding inequality,

pT ≥ p̂k−1T −

√
T ln( 12

δ )

2
,

(1− p)T ≥ (1− p̂k−1)T −

√
T ln( 12

δ )

2
.

When T ≥ 32 ln( 12
δ )

(min(p,1−p))2 , we can bound ζ1 ≤ γ1 and ζ2 ≤

γ2 due to T ≥ 32 ln( 12
δ )

(min(p,1−p))2 , then the conclusion follows.



Fast Stochastic AUC Maximization

0.5 1 1.5 2 2.5 3 3.5

iteration 10
4

0.886

0.888

0.89

0.892

0.894

0.896

0.898

0.9

0.902

A
U

C

a9a dataset

FSAUC

SOALM

SOLAM_l1

OPAUC

(a) a9a

1 2 3 4 5 6 7 8 9 10

iteration 10
4

0.89

0.895

0.9

0.905

0.91

0.915

0.92

0.925

0.93

A
U

C

ijcnn1 dataset

FSAUC

SOALM

SOLAM_l1

OPAUC

(b) ijcnn1

0.5 1 1.5 2 2.5 3 3.5 4

iteration 10
5

0.808

0.81

0.812

0.814

0.816

0.818

0.82

0.822

0.824

0.826

A
U

C

covtype_binary dataset

FSAUC

SOALM

SOLAM_l1

OPAUC

(c) covtype

0 1 2 3 4 5 6 7 8

iteration 10
6

0.677

0.678

0.679

0.68

0.681

0.682

0.683

0.684

A
U

C

HIGGS dataset

FSAUC

SOALM

SOLAM_l1

OPAUC

(d) HIGGS

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

iteration 10
4

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

A
U

C

w8a dataset

FSAUC

SOALM

SOLAM_l1

OPAUC

(e) w8a

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

iteration 10
4

0.97

0.975

0.98

0.985

0.99

0.995

A
U

C

real-sim dataset

FSAUC

SOALM

SOLAM_l1

OPAUC

(f) real-sim

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

iteration 10
5

0.989

0.99

0.991

0.992

0.993

0.994

0.995

0.996

A
U

C

rcv1_binary dataset

FSAUC

SOALM

SOLAM_l1

OPAUC

(g) rcv1 binary

2000 4000 6000 8000 10000 12000 14000

iteration

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

A
U

C

news20.binary dataset

FSAUC

SOALM

SOLAM_l1

OPAUC

(h) news20.binary

Figure 1. AUC-Iteration curves of FSAUC and the baselines

5. Experiments
In this section, we conduct experiments to compare
our FSAUC algorithm with two state-of-the-art stochas-
tic/online AUC optimization methods, namely SOLAM
(Ying et al., 2016) and OPAUC (Gao et al., 2013). To make
the comparison fair, we implement two variations of SO-
LAM by using two different norm constraints on w: SO-
LAM with `2 norm constraint (the original one) referred to
as SOLAM, and SOLAM with `1 norm constraint referred
to as SOLAM-l1.

We use eight large-scale benchmark datasets from lib-
svm website3, ranging from high-dimensional to low-
dimensional, from balanced class distribution to imbal-
anced class distribution. The statistics of these datasets are
summarized in Table 1. We randomly divide each dataset
into three sets, respectively training, validation, and testing.
For a9a and w8a datasets, we randomly split the given test-
ing set into half validation and half testing. For the datasets
that do not explicitly provide a testing set, we randomly
split the entire data into 4:1:1 for training, validation, and
testing. For the dataset ijcnn1 and rcv1 binary, despite that
the test set is given, the size of the training set is relatively
small. Thus we first combine the training and the test sets
and then follow the above procedure to split it.
The involved parameters of each algorithm are tuned based
on the validation data. FSAUC has two parameters R
and G. R is decided within the range 10[−1:1:5]. G af-

3http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

Table 1. Statistics of Datasets
Datasets #Training #Testing ]feat % of Pos

a9a 32,561 8,141 123 24.08
ijcnn1 94,460 23,616 22 9.49

covtype binary 387,341 96,836 54 51.19
HIGGS 7,333,333 1,833,334 28 52.98

w8a 49,749 7,476 300 2.97
real-sim 48,206 12,052 20,958 30.68

rcv1 binary 465,094 116,274 47,236 52.41
news20.binary 13,330 3,333 1,355,191 50.29

fects the stepsize of each epoch (Algorithm 1 line 4-5).
Since η1 =

√
β0√

3n0G
R0 and ηk+1 =

√
βk

2
√
βk−1

ηk, we equiv-

alently tune η1 ∈ 2[−10:1:10]. As for SOLAM, following
the same strategy in the original paper (Ying et al., 2016),
we tune R in 10[−1:1:5] and the learning rate in 2[−10:1:10].
OPAUC has two versions corresponding to different ways
of maintaining the covariance matrix, the full version and
an approximated version designed to deal with high di-
mensional data. On the five low-dimensional datasets (a9a,
ijcnn1, covtype binary, HIGGS, w8a), we use the full ver-
sion of OPAUC, since the dimension is low enough and
thus it is unnecessary to use the low rank approximation
method, which is less accurate and more complicated. For
the three high-dimensional datasets (real-sim, rcv1 binary,
news20.binary), we set the low rank τ = 50, the same as
the original paper (Gao et al., 2013). There are two param-
eters shared by both versions of OPAUC, step size η and
regularized parameter λ. Following the suggestion of the
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Figure 2. AUC-Time curves of FSAUC and the baselines

Table 2. Averaged final AUC on testing data

Datasets FSAUC SOLAM SOLAM l1 OPAUC
a9a .900782± .000197 .899884± .000358 .898382± .000973 .900350± .000450

ijcnn1 .923230± .001310 .917147± .002526 .921682± .001249 .922163± .002296
covtype binary .824046± .000242 .823440± .000489 .819894± .001434 .822669± .000973

HIGGS .683727± .000093 .683064± .000280 .683526± .000086 .681697± .000401
w8a .962703± .001485 .945508± .011601 .949083± .004182 .952536± .002712

real-sim .991862± .000243 .990473± .000111 .979830± .000911 .988357± .000147
rcv1 binary .995448± .000052 .993601± .000044 .994767± .000071 .990634± .000039

news20.binary .975428± .000513 .956472± .000957 .937493± .006501 .967471± .000721

original paper (Gao et al., 2013), we tune η ∈ 2[−12:1:−4]

and λ ∈ 2[−10:1:0].

Each algorithm updates the model by one pass of training
data and the models at different iterations are evaluated by
AUC computed on the testing data to demonstrate the (test-
ing) convergence speed of different algorithms. We report
the results on testing sets averaged over 5 random runs over
the training data. The convergence curves of considered al-
gorithms are plotted in Figure 1 and Figure 2 in terms of
both the number of iterations and training time. The final
AUC with the standard deviation over 5 runs is summa-
rized in Table 2. From Figure 1, we can see that the pro-
posed FSAUC converges faster than the two state-of-the-art
methods, which is consistent with our theory. For the con-
vergence in terms of running time shown in Figure 1, the
proposed FSAUC also has the best performance.

6. Conclusion
In this paper, we have proposed a novel stochastic algo-
rithm for AUC maximization in the classical stochastic set-
ting where one random data is received at each iteration.
We theoretically analyze the proposed algorithm and derive
a fast convergence rate of Õ(1/n), largely improved from
the best result that the current state-of-the-art method can
achieve - Õ(1/

√
n). We have also verified the efficiency

of our algorithm by experiments on multiple benchmark
datasets, and the results show that our algorithm converges
faster than two strong baseline algorithms in terms of both
the number of iterations and running time. For future work,
we will consider fast stochastic algorithms for AUC maxi-
mization based on different surrogate losses. One may also
consider extending the proposed algorithm to learning to
rank from pairwise data in which the label of each data have
more than two possible values in the binary classification.
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