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Abstract
Modeling dialog systems is currently one of the
most active problems in Natural Language Pro-
cessing. Recent advances in Deep Learning have
sparked an interest in the use of neural networks
in modeling language, particularly for personal-
ized conversational agents that can retain contex-
tual information during dialog exchanges. This
work carefully explores and compares several of
the recently proposed neural conversation models,
and carries out a detailed evaluation on the mul-
tiple factors that can significantly affect predictive
performance, such as pretraining, embedding train-
ing, data cleaning, diversity-based reranking, eval-
uation setting, etc. Based on the tradeoffs of dif-
ferent models, we propose a new neural generative
dialog model conditioned on speakers as well as
context history that outperforms previous models
on both retrieval and generative metrics. Our find-
ings indicate that pretraining speaker embeddings
on larger datasets, as well as bootstrapping word
and speaker embeddings, can significantly improve
performance (up to 3 points in perplexity), and that
promoting diversity in using Mutual Information
based techniques has a very strong effect in rank-
ing metrics.

1 Introduction
Modeling dialog systems is one of the most active and prob-
lems in natural language processing. Successful dialog sys-
tems highlight our ability to replicate complete language un-
derstanding and thus clear the ‘Turing Test’, a true test for
machine intelligence. The recent advancement in deep learn-
ing has sparked an interest in use of neural networks in
modeling language. In particular, dialog or conversational
models too have received a lot of attention due to its wide
range of applications in human-machine interaction such as
personal assistants, technical support for products and ser-
vices, entertainment, to name a few [Lowe et al., 2015;
Serban et al., 2016a; Wen et al., 2015; Li et al., 2016b;
Sordoni et al., 2015].

In contrast to classical rule-based models, deep learning
models leverage huge amounts of language data and can in

Figure 1: Illustration of personalized and context-aware dialogue
system. The agent generates responses that are personalized to the
specific user and in the right context.

principle be trained end-to-end. Recently proposed mod-
els [Sordoni et al., 2015; Li et al., 2016b; Serban et al.,
2016b] have shown success in training neural dialog sys-
tems that return semantic and syntactic responses for a given
input. However, several challenges such as enforcing con-
sistency, context-awareness and personalization still remain
largely unsolved. Also, it is relatively unclear the extent to
which various components of these models contribute to the
overall prediction quality.

To help address these issues, we present below the two
main contributions of this paper.

First, we carefully compare several of the recently pro-
posed neural conversation models, and carry out a detailed
evaluation on the multiple factors that can significantly af-
fect predictive performance, such as pretraining, embedding
training, data cleaning, diversity reranking, evaluation setting
(retrieval or generative evaluation), etc.

Second, we propose a new generative dialog model condi-
tioned on both speakers and context history that outperforms
previous models on generative metrics (such as Perplexity) as
well as on retrieval metrics (such as Recall@K).

Our findings indicate that pretraining speaker embeddings
on larger datasets, as well as bootstrapping word and speaker
embeddings, can significantly boost predictive performance
(up to 3 points in perplexity), and that promoting diversity



via Mutual Information based techniques has a strong effect
in ranking metrics.

The paper is organized as follow: Sec. 2 discusses some
of related work in conversational agents. We introduce our
model along with other baselines in Sec. 3, followed by de-
scription of the datasets used in Sec. 4. Our experimental de-
tails including training procedure, model variants and evalu-
ation, are elaborated in Sec. 5. Finally, we present our results
in Sec. 6 and conclude with discussions in Sec. 7.

2 Related Work
Conversation exchanges have traditionally been modeled us-
ing heuristics, templates, hand-crafted rules or statistically
learning parts of (a usually complex) dialog system from rela-
tively small amounts of data. However, the recent availability
of large amounts of conversation data has opened the gates
for the creation of several data-driven dialog models. For
instance, using millions of Twitter conversation exchanges,
Ritter et al. [Ritter et al., 2011] modeled dialog responses as
generated from dialog questions using a phrase-based statis-
tical machine translation system. One of the main advantages
of data-driven models is that they can be created in an end-
to-end manner, that is, purely derived from its input data and
with no explicit bias or assumptions on dialog structure.

In addition to the availability of large dialog collections,
recent advances in Deep Learning have led to significant
improvements on several NLP tasks. Works on distributed
representation of language [Mikolov and Dean, 2013], neu-
ral language models [Bengio et al., 2003] and sequence-to-
sequence learning [Sutskever et al., 2014] have significantly
changed the state-of-the-art landscape in NLP. One of the first
attempts of neural dialog models was proposed by Vinyals
and Le [Vinyals and Le, 2015], where a dialog response is
generated from a dialog question (or previous sentence) in a
sequence-to-sequence framework. Further improvements on
this generative modeling idea were later explored in [Li et
al., 2016b], [Sordoni et al., 2015], [Serban et al., 2015a] and
[Galley et al., 2015].

Instead of generating sentences in dialogs, another plausi-
ble approach to conversation modeling is to retrieve the best
possible answer from a large collection of previous dialogs.
For instance, Ameixa et al [Ameixa et al., 2014] used movie
subtitles to retrieve good answers to out-of-domain questions.
More recently, Al-Rfou et al. [Al-Rfou et al., 2016] uti-
lized an enormous amount of dialog data derived from Reddit
and created a personalized and contextualized neural ranking
model able to retrieve the best answers from a large collec-
tion. Kannan et al. [Kannan et al., 2016] proposed a smart
reply system for email where relevant pre-selected answers
are ranked according to the incoming message contents.

Our proposed model draws inspiration from the ideas of
[Serban et al., 2015a] and [Al-Rfou et al., 2016], but extends
them to contextualize in a generative model both personas as
well as previous dialog contexts. More importantly, we pro-
vide a comprehensive evaluation, revisiting various assump-
tions on the training procedure of these models (and its com-
ponents), and how each one affect their final performance in
both generation and retrieval settings.

3 Models
In this section, we first introduce notation and briefly
overview GRU [Cho et al., 2014], the underlying recurrent
neural network (RNN) for all the models. We then discuss
some baselines for our work that either do not consider one
of context and personalization or both. Finally, we describe
our proposed conversational model that conditions on both
the history and speaker information.

3.1 Notation

Models in this work are trained using a dataset of con-
versations with multiple participant speakers (see Sec. 4
for details). A conversation C
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i indexing the conversations. All our language models pre-
dict the distribution of the next word conditioned on previous
information at each time step. The difference in the extent of
information used from previous turns gives rise to different
models that we aim to compare in this work.

3.2 Gated Recurrent Unit (GRU)

GRU [Cho et al., 2014] is used to model a sequence of inputs,
e.g., words in a sentence in our case. For a sentence W =
{w1, w2, · · · , wn
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update equations are given as follows:

z

t

= �(W
z

· [h
t�1, wt

]) (1)
r

t

= �(W
r

· [h
t�1, wt

]) (2)

h̃

t

= tanh (W · [r
t

⇤ h
t�1, wt

]) (3)

h

t

= (1� z

t

) ⇤ h
t�1 + z

t

⇤ h̃
t

(4)
w

0
t+1 = softmax (W

o

· h
t

) (5)

where ⇤ represents element-wise multiplication and w‘s
are embeddings for the corresponding words. Matrices
W
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,W
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o

are parameters learnt by optimizing a loss
function for given train data, depending on the task at hand.
In a simple setting, one could maximize the probability of
observed next word as predicted by GRU.

3.3 Baselines

For quantitative comparison, we train the following neural
models as baselines. Additionally, we also consider a statis-
tical language model, an n-gram (where n = 5) model with
Kneser-Ney smoothing [Kneser and Ney, 1995].



Encoder-Decoder: Neural conversational model [Vinyals
and Le, 2015] couples two RNNs, an encoder and decoder,
and learns to predict a novel response for a given input sen-
tence. This approach does not consider speaker information
and is dyadic in nature, i.e., the next response is dependent
only on the current dialog and independent of other informa-
tion. We call this enc-dec baseline, and the language model
is shown below:

P (wj

t+1|w
j

1, · · · , w
j

t

, D

�j

, S

�j

, S

j)

= P (wj

t+1|w
j

1, · · · , w
j

t

, D

j�1) (6)

Here, D�j denotes the set of all previous turns upto j, i.e.,
D
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, D

2
, · · · , Dj�1}. Similarly for speakers S�j .

Persona-only: Next we consider the persona-based con-
versational model [Li et al., 2016b] that extends the basic
encoder-decoder model by including speaker as an additional
input for both encoder and decoder RNNs. In particular, we
consider the speaker-addressee model of [Li et al., 2016b]
and call it persona. The distribution of next word at a given
time step is as follows:
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Thus, the language model is dependent on the speaker of the
current and previous turns, achieving personalization while
generating novel responses to sentences.

Context-only: The Hierarchical Recurrent Encoder-
Decoder [Serban et al., 2016b] captures contextual cues
through a high level, context RNN that updates its hidden for
every turn in a conversation and is learnt on top of encoder-
decoder RNNs. However, it does not encapsulate any
personalization information and thus forms the context
baseline for our experiments. For details, we refer the reader
to [Serban et al., 2015a]. The language model in this case is
as follows:
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Notice the dependence of the next word on all of the previous
turns, thereby retaining the context information through his-
tory. However, in practice, history is truncated and only past
few turns are considered.

3.4 CoPerHED Model
Our model Context-aware, Persona-based Hierarchical
Encoder-Decoder (CoPerHED) is a hybrid of persona-based
[Li et al., 2016b] and context-aware [Serban et al., 2016b]
neural conversational models. By combining the two, we
condition the language model both on the context of conver-
sation as well as the speaker information for current and pre-
vious turns, thus achieving the desired personalization while
generating novel responses. The proposed model architecture
is depicted in Fig. 2. Akin to [Li et al., 2016b], speaker infor-
mation for the current and previous turns is fed into the RNN

as an additional input. Context-awareness is achieved similar
to the hierarchical model in [Serban et al., 2016b], where an
additional RNN summarizes information at the level of turns.
Thus, CoPerHED has access to entire history both in terms of
context and speaker persona while predicting the next word.
The language model is therefore dependent on sentences and
speakers in previous turns along with current speaker. We
now detail three constituents:

Encoder: An encoder is simply a RNN used to convert a
sentence into an encoded vector. The hidden state of encoder
RNN for jth turn h

j

t

is evolved by feeding one word at each
time step along with current speaker annotation. Represen-
tations for all the words and speakers are jointly learnt as
embeddings in the model. The final hidden state h

j

n

after
processing all the words in the sentence is used as a repre-
sentation for the entire sentence, and forms the input to the
context RNN as shown in Fig. 2. If sj denotes the speaker
embedding for the current turn, then:
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where GRU(.) denotes the GRU function (see Sec. 3.2). No-
tice that the speaker persona s

j is fixed for all time steps for
the given turn.

Context RNN: Encoded representations for sentences at
each turn in the conversation is processed by the context
RNN. This helps retain relevant information from the pre-
vious turns and serves as context for predicting responses.
Similar to [Serban et al., 2016b], CoPerHED constitutes a hi-
erarchy of RNNs with context RNN working at a turn-level in
a conversation while language RNN (GRU in this case) works
at a word-level in every turn. Let g

j

denote the hidden state
of context RNN at jth turn, then:
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Decoder: Similar to encoder, decoder RNN processes
words one at a time to predict the distribution of the next
word. The current word, speaker for the current turn and the
hidden state from context RNN are its inputs. Using ĥ

t

to
represent the hidden state of the decoder, we have:
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t
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Eq. 5. Training is carried out by maximizing the loglikehood
of wj+1

t

predicted by the decoder.

4 Datasets
To evaluate our method, we need a dataset with everyday, free
form natural language conversations between multiple peo-
ple. Such a dataset would help capture and condition the lan-
guage model on both desired aspects–context of conversation
and persona of speaker. To this end, we choose three datasets
comprising of subtitles from famous movies and TV shows
as they are good sources for teaching and learning spoken
language features [Forchini, 2009].



Figure 2: Architecture of CoPerHED explained with an example. Speakers are labeled with single letter for brevity. Joey: i am not feeling
good.; Chandler: what happened?; Joey: i might have cold.; Ross: get well soon. The encoder RNN admits an additional input for speaker.
The final hidden state of encoder, used as representation for the turn, is processed by context RNN. The output of context RNN is fed into
decoder RNN along with current word and next speaker, to generate novel responses.

Movie-DiC dataset: The Movie-DiC dataset [Banchs,
2012] was collected through The Internet Movie Script
Data Collection (IMSDb)1, which contains publicly available
movie subtitles. The dataset has around 132K conversations
from 753 movies that comprises of roughly 764K turns. It
has explicit speaker annotations and retains the order of turns
in a given conversation making it a good choice to train our
model.

TV-Series dataset: We use freely available transcripts for
two American television comedy shows, Friends2 and The
Big Bang Theory3, to construct our TV-Series dataset. We
parse the corresponding HTML pages to extract all the turns
preserving the conversation structure and speaker annota-
tions. There are around 4.4K conversations with a total of
93K speaker turns in this dataset. Due to the small size, we do
not train directly on this dataset but instead finetune a model
pre-trained on a larger dataset to avoid overfitting.

SubTle dataset The third dataset we consider is the Sub-
Tle [Ameixa et al., 2014], which is an enormous, non-dialog
corpus extracted from movie subtitles. It has around 5.5M
pairs of turns without speaker annotations and hence is not
favorable to directly train our model. However, we use it to
pre-train giving us a strong language prior as discussed in
Sec. 5.3.

1http://www.imsdb.com/
2http://transcripts.foreverdreaming.org/

viewforum.php?f=159
3https://bigbangtrans.wordpress.com/

Movie-DiC TV-Series SubTle

Total convs. 38.3K 4.40K 5.50M
Total turns 437K 93.2K 11.0M

Tokens 6.00M 1.29M 96.5M
Speakers 1.79K 60 -

Turns/speaker 3.35K 21.6K -

Table 1: Dataset statistics after preprocessing (Sec. 5.1).

5 Experiments
We now explain the setup to train and evaluate our conver-
sational model that is context-aware and conditions on the
persona of the speaker.

5.1 Data Preprocessing
The datasets (Sec. 4) are preprocessed as follows. We fol-
low [Serban et al., 2015b] and tag named entities using the
NER tagger from the standard NLTK library [Bird et al.,
2009] and replace them with placeholders (e.g. <PERSON>,
<PLACE>, etc.). Next, we split the dataset into three non-
overlapping partitions – train (80%), validation (10%) and
test (10%) We then construct our vocabulary by considering
only the words that occur at least 10 times in the dataset. All
of the remaining words are replaced with an unknown token
(<UNK>). Similarly, speakers who have at least 50 turns
in the training set are considered while the remaining are
mapped to an unknown speaker (<UNS>). Table 1 shows
the statistics after dataset preprocessing. TO be able to gen-
eralize, we use the same vocabulary of size 10.4K obtained
from train data of Movie-DiC, for all the datasets.



Model smp w2v spk bth pre

Kneser-Ney 56.58

enc-dec 42.80 41.35 - - 35.22

persona 42.74 41.43 42.16 40.89 35.01

context 42.30 41.15 - - 33.95

CoPerHED 41.35 40.56 41.07 39.82 33.66

Table 2: Perplexity for various models in the generative task on
Movie-DiC dataset. Lower the better. CoPerHED outperforms other
baselines in all the settings (std: ±0.1).

5.2 Training
We use the deep learning framework Torch [Collobert et al.,
2011], to build and train our models by minimizing the log-
likelihood of tokens predicted by the language model. To per-
form fair comparisons across all the model architectures, we
use 2-layered Gated Recurrent Unit (GRU) for both the en-
coder and decoder with a dropout [Srivastava et al., 2014]
of 0.2. The parameters of the network are learnt through
standard back-propagation algorithm with adam optimizer
[Kingma and Ba, 2014]. The learning rate is set to 0.001 and
is decayed exponentially to 0.0001 by the end of 10 epochs,
after which it is held constant. Gradient values are clipped to
within [�5.0, 5.0] to avoid explosion. Training is terminated
once the perplexity on the held-out validation set saturates for
the given model. To find the best hyperparameters, we once
again use perplexity on validation set across various settings.
For all our models, best performance was achieved when:

• Word embeddings size is 300

• Speaker embedding size is 50

• Number of hidden units for encoder/decoder GRU is 300

• Number of hidden units for context GRU is 50

5.3 Initialization
Neural models have high learning capacity with a lot of pa-
rameters and tend to overfit easily if the size of training
dataset is not sufficiently large. Therefore, it is usually advan-
tageous to learn priors either by bootstrapping few parameters
or pre-training using a larger general corpus. We experiment
with three such settings as explained below:

Bootstrap word embeddings: As discussed in Sec. 3, the
model jointly learns semantic representations for one-hot en-
coded words along with the parameters, using the training
dataset. Instead of training them from scratch, one could ini-
tialize with representations learnt offline. To this end, we use
word2vec [Mikolov and Dean, 2013] trained on a huge cor-
pus of 1 billion words as these capture rich notions of seman-
tic relatedness useful for language models. Specifically, we
use the 300-dimension, publicly available 4 embeddings.

4https://code.google.com/archive/p/
word2vec/

Bootstrap speaker embeddings: Similar to word embed-
dings, models dependent on persona learn vector representa-
tions for one-hot encoded speakers. Thus, apart from learn-
ing them from scratch we also experiment initializing these
speaker embeddings with hand-crafted features. In particular,
we construct bag-of-words (BOW) feature for all the speakers
from training data and reduce its dimension as needed using
PCA. It is interesting to observe that even a simple BOW fea-
ture improves over random initialization.

Pre-train on SubTle dataset: The performance of a neu-
ral model usually gets better with increasing the amount of
training data. However, it is not always trivial to find large
datasets of required nature either due to expensive annota-
tions or inherent unavailability. In such cases, previous works
have shown success while pre-training using an other huge
dataset and then fine-tuning on a desired target dataset for
the actual task at hand. Following this intuition, we addi-
tionally pre-train our models on a much larger SubTle dataset
before fine-tuning on the target dataset, which is either the
Movie-DiC or TV-Series dataset. As SubTle dataset is nei-
ther speaker-annotated nor has entire conversations, we sim-
ply assign all speakers to <UNS> and treat randomly chosen
lines as a conversation for pre-training.

Model Variants: For each language model, we learn vari-
ants based on how the weights have been initialized:

• smp: trained with random initialization,
• w2v: bootstrap word embeddings using word2vec,
• spk: bootstrap speaker embeddings using BOW,
• bth: bootstrap both the embeddings,
• pre: use SubTle pre-trained initialization.

5.4 Evaluation
We consider two different evaluation setups as given below:

Generation: Automatic evaluation of probabilistic lan-
guage models that generate novel responses remains an open
problem of research [Liu et al., 2016]. Though it is desired
that generated language be sound both syntactically and se-
mantically, its relevance cannot be easily evaluated. Metrics
like Perplexity, BLEU, and deltaBLEU, have been adopted
from machine translation to understand the performance of
such generative models. Following [Serban et al., 2016b], we
use perplexity in our study. Perplexity, a measure of likeli-
hood of an unseen test set according to a model, has been
used with success in various tasks such as machine transla-
tion, image captioning and speech recognition.

Retrieval: Additionally, we consider retrieval as accurate
metrics that reflect performance can be used. To evaluate for
a turn in a conversation, we consider an answer pool of size N
containing the ground truth and N � 1 other, randomly sam-
pled turns from the test set. The generative language model is
used to score all the sentences from the answer pool and re-
rank according to a scoring function. We then use recall@k
metric that measures the percent of sentences whose ground
truth was ranked in the top-K of the answer pool. We dis-
cuss the choice of scoring function in the next subsection. It
must be noted that all the neural models are trained with a



Model smp w2v spk bth

R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

Random 10.00 50.00 10.00 50.00 10.00 50.00 10.00 50.00

enc-dec 36.66 82.14 38.23 83.77 - - - -

persona 37.93 83.51 38.95 84.79 40.02 85.48 41.28 87.21

context 34.92 85.34 38.16 85.11 - - - -

CoPerHED 37.57 85.64 36.25 86.02 37.92 87.02 39.40 88.06

Table 3: Retrieval results for Movie-DiC dataset with N = 10. Metrics used are Recall@1
and Recall@5, higher the better. Our CoPerHED improves over other models for R@5.
std=±0.35%

Model Perplexity

Kneser-Ney 71.77

enc-dec 34.20

persona 34.63

context 32.08

CoPerHED 31.48 (-8%)

Table 4: Perplexity on TV show dataset.
Our model CoPerHED shows an improve-
ment of 8%. We only finetune models on
this dataset due to small size.

generative loss and therefore are not optimized for retrieval.
However, such a retrieval setup would help us understand the
discriminative nature of the model and thereby evaluate their
ability to capture the underlying language distribution.

5.5 Promoting diversity using MI
Generative language models tend to produce safe and generic
responses, e.g., I don‘t know, Yes and so on. High frequency
of such phrases in the train dataset could be a potential rea-
son for such a phenomenon [Serban et al., 2016b]. Recent
works [Li et al., 2016a; Wen et al., 2015] mitigate this by ei-
ther using a diversity promoting objective or re-ranking mul-
tiple responses. Following [Li et al., 2016a], we adopt Mu-
tual Information as our scoring function in the retrieval setup.
We observed that changing this scoring function from Like-
lihood to Mutual Information resulted in drastic performance
improvement for all the models alike.

6 Results
6.1 Generative
Tab. 2 summarizes the generative results on the Movie-DiC
dataset. Firstly, all the neural models outperform Kneser-Ney
smoothing by more than 14 perplexity points. This is intuitive
as statistical methods suffer from the curse of dimensionality
with increase in size of data. CoPerHED outperforms all the
competing baselines in any variant, thus confirming our hy-
pothesis that context-awareness and personalization leads to
better conversational modeling. We also see that bootstrap-
ping with either word (w2v) or speaker (spk) embeddings
improves performance for all models alike. In particular,
word2vec initialization is more effective as it is pre-trained
on Google billion word corpus [Chelba et al., 2013] thereby
providing a rich prior. Interestingly, initializing both embed-
dings (bth) outperforms either one (w2v, spk), suggesting a
complementary benefit obtained from each source. However,
the best performance in each model is obtained by pretrain-
ing on SubTle dataset that is atleast one order of magnitude
larger. Pretraining resulted in a drop of atleast 7 perplexity
points. This behavior is as expected because neural networks
allow successful transfer learning, i.e., pretrain on a huge cor-
pus before fine-tuning on desired, target corpus.

Results for generative setup on TV series is given in Tab. 4.
We again find that CoPerHED outperforms all the baselines

by around 3 perplexity points resulting in an improvement of
8% over enc-dec.

6.2 Retrieval

We use N = 10 for our experiments on retrieval. Note that
we re-use generative models for retrieval task and do not train
them discriminatively. Clearly, CoPerHED has the best Re-
call@5 metric amongst all the competing methods. However,
persona seems to outperform other models in terms of Re-
call@1. We hypothesize that this could be due to stronger
persona-based cues while retrieving from an answer pool of
N = 10. To summarize, language prediction in CoPer-
HED takes advantage of both personalization and context-
awareness, leading to performance improvement over base-
lines, which we expect to increase further with larger datasets.

7 Discussion and Conclusion

In this work, we attempted to better understand generative
neural conversation models. We described some of the key
components of such models, and carefully investigated issues
that can severely affect model performance, including pre-
training strategies, speaker and word embeddings initializa-
tions, and data cleaning conventions. Using different datasets
we observed consistently that pretraining speaker embed-
dings on larger datasets, as well as bootstrapping word and
speaker embeddings appropriately, can have a very positive
and noticeable impact on performance.

We also proposed a new neural context-aware and person-
alized generative dialog model (CoPerHED) that, by jointly
accounting for persona and previous dialog context, was able
to outperform previous baselines on multiple datasets. We
also evaluated all models on a retrieval setting (under the
same assumptions), where we observed that promoting di-
versity via Mutual Information based techniques has a very
strong effect in ranking metrics.

As future work, we intend to further investigate the trade-
offs between a retrieval versus a generation setting for dialog
modeling. Different settings may be used for different situa-
tions. Another future research direction lies on the cold start
problem for a brand new speaker. That is, how to better model
a new speaker in a well known dialog context.
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