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Abstract We propose a novel method for real-time face
alignment in videos based on a recurrent encoder-decoder
network model. Our proposed model predicts 2D facial point
heat maps regularized by both detection and regression loss,
while uniquely exploiting recurrent learning at both spatial
and temporal dimensions. At the spatial level, we add a feed-
back loop connection between the combined output response
map and the input, in order to enable iterative coarse-to-fine
face alignment using a single network model, instead of rely-
ing on traditional cascaded model ensembles. At the tempo-
ral level, we first decouple the features in the bottleneck of
the network into temporal-variant factors, such as pose and
expression, and temporal-invariant factors, such as identity
information. Temporal recurrent learning is then applied to
the decoupled temporal-variant features. We show that such
feature disentangling yields better generalization and sig-
nificantly more accurate results at test time. We perform a
comprehensive experimental analysis, showing the impor-
tance of each component of our proposed model, as well as
superior results over the state of the art and several variations
of our method in standard datasets.
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1 Introduction

Face landmark detection plays a fundamental role in many
computer vision tasks, such as face recognition/verification,
expression analysis, person identification, and 3D face mod-
eling. It is also the basic technology component for a wide
range of applications like video surveillance, emotion recog-
nition, augmented reality on faces, etc. In the past few years,
many methods have been proposed to address this problem,
with significant progress being made towards systems that
work in real-world conditions (“in the wild”).

Multiple lines of research have been explored for face
alignment in last two decades. Early research includes meth-
ods based on active shapemodels (ASMs) [10, 31] and active
appearance models (AAMs) [13]. ASMs iteratively deform
a shape model to the target face image, while AAMs impose
both shape and object appearance constraints in the opti-
mization process. Recent advances in the field are largely
driven by regression-based techniques [53, 7, 57, 23, 58].
These methods usually take advantage of large-scale an-
notated training sets (lots of faces with labeled landmark
points), achieving accurate results by learning discrimina-
tive regression functions that directly map facial appearance
to landmark coordinates. The features extracted for regress-
ing landmarks can be either hand-crafted features [53, 7],
or features extracted from convolutional neural networks
[57, 23, 58]. Although these methods can achieve very reli-
able results in standard benchmark datasets, they still suffer
from limited performance in challenging scenarios, e.g., in-
volving large face pose variations and heavy occlusions.

A promising direction to address these challenges is to
consider video-based face alignment (i.e., sequential face
landmark detection) [43], leveraging temporal information
and identity consistency as additional constraints [50]. De-
spite the long history of research in rigid and non-rigid face
tracking [5, 35, 11, 36], current efforts have mostly focused
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on face alignment in still images [41, 57, 48, 59]. When
videos are considered as input, most methods perform land-
mark detection by independently applying models trained on
still images in each frame in a tracking-by-detection manner
[51], with notable exceptions such as [2, 39], which explore
incremental learning based on previous frames. These meth-
ods do not take full advantage of the temporal information
to predict face landmarks for each frame. How to effectively
model long-term temporal constraints while handling large
face pose variations and occlusions is an open research prob-
lem for video-based face alignment.

In this work, we address this problem by proposing a
novel recurrent encoder-decoder deep neural network model
(see Figure 1), named as RED-Net. The encoding module
projects image pixels into a low-dimensional feature space,
whereas the decoding module maps features in this space
to 2D facial point maps, which are further regularized by a
regression loss.

Our encoder-decoder framework allows us to explore spa-
tial refining of our landmark prediction results, in order to
handle faces with large pose variations.More specifically, we
introduce a feedback loop connection between the aggregated
2D facial point maps and the input. The intuition is similar
to cascading multiple regression functions [53, 57] for iter-
ative coarse-to-fine face alignment, but in our approach the
iterations are modeled jointly with shared parameters, using
a single network model. It provides significant parameter
reduction when compared to traditional methods based on
cascaded neural networks. A recurrent structure also avoids
the effort to explictly divide the task into multiple stage pre-
diction problems. This subtle difference makes the recurrent
model more elegant in terms of holistic optimization. It can
implictly track the prediction behavior in different iterations
for a specific face example, while cascaded predictions can
only look at the immediate previous cascade stage. Our de-
sign also shares the same spirit of residual networks [14]. By
adding feedback connections from the predicted heatmap,
the network only needs to implictly predict the residual from
previous predictions in subsequent iterations, which is ar-
guably easier and more effective than directly predicting the
absolute location of landmark points.

For more effective temporal modeling, we first decouple
the features in the bottleneck of the network into temporal-
variant factors, such as pose and expression, and temporal-
invariant factors, such as identity.We disentangle the features
into two components, where one component is used to learn
face recognition using identity labels, and the other compo-
nent encodes temporal-variant factors. To utilize temporal
coherence in our framework, we apply recurrent temporal
learning to the temporal-variant component. We used Long
Short Term Memory (LSTM) to implictly abstract motion
patterns by looking at multiple successive video frames, and
use this information to improve landmark fitting accuracy.

Landmarks with large pose variation are typically outliers
in a landmark training set. By looking at multiple frames, it
helps to reduce the inherent prediction variance in ourmodel.

We show in our experiments that our encoder-decoder
framework and its recurrent learning in both spatial and tem-
poral dimensions significantly improve the performance of
sequential face landmark detection. In summary, our work
makes the following contributions:

– We propose a novel recurrent encoder-decoder network
model for real-time sequential face landmark detection.
To the best of our knowledge, this is the first time a
recurrent model is investigated to perform video-based
facial landmark detection.

– Our proposed spatial recurrent learning enables a novel
iterative coarse-to-fine face alignment using a single net-
work model. This is critical to handle large face pose
changes and a more effective alternative than cascading
multiple network models in terms of accuracy and mem-
ory footprint.

– Different from traditional methods, we apply temporal
recurrent learning to temporal-variant features which are
decoupled from temporal-invariant features in the bottle-
neck of the network, achieving better generalization and
more accurate results.

– Weprovide a detailed experimental analysis of each com-
ponent of our model, as well as insights about key con-
tributing factors to achieve superior performance over the
state of the art. The project page is publicly available. 1

2 Related Work

Face alignment has a long history of research in computer
vision. Here we briefly discuss face aligment works related
to our approach, as well as advances in deep learning, like
the development of recurrent and encoder-decoder neural
networks.

Regression-based face landmark detection. Recently,
regression-based face landmark detectionmethods [1, 45, 53,
7, 57, 2, 59, 48, 19, 52, 60] have achieved significant boost in
the generalization performance of face landmark detection,
compared to algorithms based on statistical models such as
Active shape models [10, 31] and Active appearance mod-
els [13]. Regression-based approaches directly regress land-
mark locations based on features extracted from face images.
Landmark models for different points are learned either in
an independent manner or in a joint fashion [7]. When all the
landmark locations are learned jointly, implicit shape con-
straints are imposed because they share the same or partially
the same regressors. This paper performs landmark detection

1 https://sites.google.com/site/xipengcshomepage/
project/face-alignment

https://sites.google.com/site/xipengcshomepage/project/face-alignment
https://sites.google.com/site/xipengcshomepage/project/face-alignment
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via both a classification model and a regression model. Dif-
ferent frommost previous methods, this work deals with face
alignment in a video. It jointly optimizes detection output by
utilizing multiple observations from the same person.

Cascaded models for landmark detection. Additional
accuracy improvement in face landmark detection perfor-
mance can be obtained by learning cascaded regressionmod-
els. Regression models from earlier cascade stages learn
coarse detectors, while later cascade stages refine the re-
sult based on early predictions. Cascaded regression helps
to gradually reduce the prediction variance, thus making the
learning task easier for later stage detectors. Many methods
have effectively applied cascade-like regression models for
the face alignment task [53, 45, 57]. The supervised descent
method [53] learns cascades of regression models based on
SIFT features. Sun et. al. [45] proposed to use three levels
of neural networks to predict landmark locations. Zhang et.
al. [57] studied the problem via cascades of stacked auto-
encoders which gradually refine the landmark position with
higher resolution inputs. Compared to these efforts which ex-
plicitly define cascade structures, our method learns a spatial
recurrent model which implicitly incorporates the cascade
structure with shared parameters. It is also more "end-to-
end" compared to previous works that divide the learning
process into multiple stages.

Face alignment in videos. Most face alignment algo-
rithms utilize temporal information by initializing the loca-
tion of landmarks with detection results from the previous
frame, performing alignment in a tracking-by-detection fash-
ion [51]. Asthana et. al. [2] and Peng et. al. [39] proposed
to learn a person specific model using incremental learn-
ing. However, incremental learning (or online learning) is a
challenging problem, as the incremental scheme has to be
carefully designed to prevent model drifting. In our frame-
work, we do not update our model online. All the training is
performed offline and we expect our LSTM unit to capture
landmark motion correlations.

Recurrent neural networks. Recurrent neural networks
(RNNs) are widely employed in the literature of speech
recognition [30] and natural language processing [29]. They
have also been recently used in computer vision. For in-
stance, in the tasks of image captioning [20] and video cap-
tioning [55], RNNs are usually employed for text generation.
RNNs are also popular as a tool for action classification. As
an example, Veeriah et. al. [49] use RNNs to learn com-
plex time-series representations via high-order derivatives
of states for action recognition.

Encoder-decoder networks Encoder and decoder net-
works are well studied in machine translation [8] where the
encoder learns the intermediate representation and the de-
coder generates the translation from the representation. It is
also investigated in speech recognition [28] and computer
vision [3, 16]. Yang et. al. [54] proposed to decouple iden-

tity units and pose units in the bottleneck of the network
for 3D view synthesis. However, how to fully utilize the de-
coupled units for correspondence regularization [27] is still
unexplored. In this work, we employ the encoder to learn
a joint representation for identity, pose, expression as well
as landmarks. The decoder translates the representation to
landmark heatmaps. Our spatial recurrent model loops the
whole encoder-decoder framework.

3 Method

The task is to locate facial landmarks in sequential images
using an end-to-end deep neural network. Figure 1 shows
an overview of our approach. The network consists of a
series of nonlinear and multi-layered mappings, which can
be functionally categorized as four modules: (1) encoder-
decoder fenc and fdec , (2) spatial recurrent learning fsrn, (3)
temporal recurrent learning ftrn, and (4) constrained identity
disentangling fcls . Details of the novelty are described in
following sections.

3.1 Encoder-Decoder

The input of the encoder-decoder is a single video frame
x ∈ Rw×h×3 and the output is a response map z ∈ Rw×h×C
which indicates landmark locations.

The encoder performs a sequence of convolution, pool-
ing and batch normalization [17] to extract a representation
code from the inputs:

e = fenc
(
x, z; θenc

)
, fenc : RW×H×C → RWe×He×Ce, (1)

where fenc
(
·; θenc

)
denotes the encoder mapping with pa-

rameters θenc . z is input together with x for recurrent learning
which will be explained soon in next section.

Symmetrically, the decoder performs a sequence of un-
pooling, convolution and batch normalization to upsample
the representation code to the response map:

z = fdec(e; θdec), fdec : RWe×He×Ce → RW×H×C, (2)

where fdec
(
·; θdec

)
denotes the decoder mapping with pa-

rameters θdec . z has the same W × H dimension as x but
different number of channels, which presents the pixel-wise
confidence of the corresponding landmark.

The encoder-decoder framework plays an important role
in our task.First, it is convenient to perform spatial recurrent
learning ( fsrn) since z has the same dimension (but different
number of channels) as x. The output of the decoder can
be directly fed back into the encoder to provide pixel-wise
spatial cues for the next recurrent step.
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Fig. 1: Overview of the recurrent encoder-decoder network: (a) encoder-decoder (Section 3.1); (b) spatial recurrent learning (Section 3.2); (c) temporal recurrent learning (Section
3.3); and (d) supervised identity disentangling (Section 3.4). fenc, fdec, fsrn, ftr n, fcls are potentially nonlinear and multi-layered mappings.

Second, we can decouple e in the bottleneck of the net-
work into temporal-invariant and -variant factors:

eid ∈ RWe×He×Ci , epe ∈ RWe×He×Cp ,Ce = Ci + Cp, (3)

where eid and epe denote the identity and pose/expression
representations, respectively. The former is further exploited
in temporal recurrent learning ( ftrn) for robust alignment,
while the latter is used in supervised identity disentangling
( fcls) to facilitate the network training.

Third, fenc and fdec are designed to be full convolutional
[26], i.e., {x, e, z} are feature maps instead of fully-connected
neurons that are often used in former encoder-decoder de-
signs. This structure is highly memory and speed efficient,
which is desirable to video-based applications.

3.2 Spatial Recurrent Learning

The purpose of spatial recurrent learning is to pinpoint land-
mark locations in a coarse-to-fine manner. Unlike existing
approaches [45, 57] that employ multiple networks in cas-
cade, we accomplish the coarse-to-fine search in a single
network in which the parameters are jointly learned in suc-
cessive recurrent steps.

The spatial recurrent learning is performed by iteratively
feeding back the previous prediction zk−1, stacked with x as
shown in Figure 2, to eventually push the shape prediction
from an initial guess to the ground truth:

zk = fsrn
(
x, zk−1; θsrn

)
, k = 1, · · · ,K, (4)

where fsrn
(
·; θsrn

)
denotes the spatial recurrent mapping

with parameters θsrn. z0 is the initial response map, which
could be a mean shape or the output of the previous frame.

In the conference version [37], detection-based supervi-
sion is performed in every recurrent step. It is robust to ap-
pearance variations but lacks precision, because pixelswithin
a certain radius around the ground-truth location are labeled

using the same value. To address this limitation, motivated
by [6], we propose to further explore the spatial recurrent
learning by performing detection-followed-by-regression in
successive steps. Specially, the detection task locates major
facial components (e.g. Cd = 7), while the regression task
refines all landmarks (e.g. Cr = 68) positions.

The first recurrent step performs landmark detection,
which guarantees fitting robustness especially in large pose
and partial occlusions. The encoder-decoder aims to output a
binary map of Cd channels, one for each landmark, in which
the values are set to 1 to mark the presence of the corre-
sponding landmark and 0 for the remaining background:

zdet = fdec
(
fenc(x, z0; θenc); θdec

)
, zdet ∈ RW×H×Cd . (5)

The detection task can be trained using pixel-wise sigmoid
cross-entropy loss function:

`det =
1

Cd

Cd∑
c=1

W∑
i=1

H∑
j=1

zci j logy
c
i j + (1 − zci j)log(1 − yci j) (6)

where zci j denotes the sigmoid output of the c-th landmark
at pixel location (i, j) and yci j is the ground-truth label at the
same location. Note that this loss function is different from
theN-way cross-entropy loss used in our previous conference
paper [37], in the sense that it allows multiple class labels for
a single pixel, which helps to tackle the landmark overlaps.

The second recurrent step performs landmark regression,
which improves the fitting accuracy of the previous detection
step. The encoder-decoder aims to output a heatmap of Cr

channels, one for each landmark, in which the values obey a
Gaussian distribution centered at the ground-truth location
with a pre-defined standard deviation:

zreg = fdec
(
fenc(x, zdet ; θenc); θdec

)
, zreg ∈ RW×H×Cr .

(7)
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Fig. 2: An unrolled illustration of spatial recurrent learning. The response map is
pretty coarse when the initial guess is far away from the ground truth if large pose
and expression exist. It eventually gets refined in the successive recurrent steps.

Fig. 3: An unrolled illustration of temporal recurrent learning. Cid encodes temporal-
invariant factor which subjects to the same identity constraint. Cpe encodes temporal-
variant factors which is further modeled in ft RNN .

The regression task can be trained using pixel-wise L2 loss:

`reg =
1

Cr

Cr∑
c=1

W∑
i=1

H∑
j=1
‖zci j − yci j ‖22, (8)

where zci j denotes the heatmap value of the c-th landmark at
pixel location (i, j) and yci j is the ground-truth value at the
same location.

Thus the recurrent learning defined in (4) can be achieved
by jointly minimizing a 2-step recurrent prediction:

argmin
θenc,θdec

`det + λ`reg, (9)

where λ balances the loss between detection and regression
tasks.Note that the recurrent steps shareweights {θenc, θdec}.

The spatial recurrent learning is highly memory efficient.
It is capable of end-to-end training, which is a significant ad-
vantage compared with the cascade framework [6]. More
importantly, the network can jointly learn the coarse-to-fine
fitting strategy in recurrent steps, instead of training cas-
caded networks independently [45, 57], which guarantees
robustness and accuracy in challenging conditions.

3.3 Temporal Recurrent Learning

The recurrent learning is performed at both the spatial and
temporal dimensions. Given T successive frames {xt ; t =
1, · · · ,T}, the encoder extracts a sequence of representations
{et ; t = 1, · · · ,T}. As we mentioned in Section 3.1, e can
be decoupled as: identity representation eid that is temporal-
invariant since all frames are subject to the same identity
constraint; and pose/expression representation epe that is
temporal-variant since pose and expression changes over
time [38]. We exploit the temporal consistence of epe via the
temporal recurrent learning.

Figure 3 shows the unrolled illustration of the proposed
temporal recurrent learning. More specifically, we aim to
achieve a nonlinear mapping ftrn, which simultaneously
tracks the latent state ht and updates etpe at time t:

ht = p(etpe, ht−1; θtrn), t = 1, · · · ,T
et∗pe = q(ht ; θtrn), (10)

where p(·) and q(·) are functions of temporal recurrent map-
ping ftrn

(
·; θtrn

)
. et∗pe is the update of etpe. θtrn corresponds

to mapping parameters which are learned using the same
detection and regression supervision (9) but unrolled at the
temporal dimension:

argmin
θenc,θdec,θtr n

T∑
t=1

`tdet + λ`
t
reg, (11)

where t counts time steps. Note that in addition to the
encoder-decoder parameters {θenc, θdec}, (11) also seeks the
optimization of θtrn in the same end-to-end framework.

The temporal recurrent learning memorizes the motion
patterns of pose and expression variations from offline train-
ing data. It can significantly improve the fitting accuracy and
robustness when large variations and partial occlusions exist.

3.4 Supervised Identity Disentangling

There is no guarantee that temporal-invariant and -variant
factors can be completely decoupled in the bottleneck by sim-
ply splitting the bottleneck representation e into two parts.
More supervised information is required to achieve the dis-
entangling. To address this issue, we propose to apply a face
recognition task on the identity representation eid , in addition
to the temporal recurrent learning applied on pose/expression
representation epe.

The supervised identity disentangling is formulated as
an N-way classification problem. N is the number of unique
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Fig. 4: Network architecture of VGGNet-based encoder fenc and decoder fdec . The encoder (A0−4) and the decoder (B4−1) are nearly symmetrical except that the encoder has
one more stage than the decoder. Therefore the dimension of the output response map z is half of the dimension of the input image x.

Table 1: Network specification of VGGNet-based encoder fenc and decoder fdec : module names (1st row), output sizes (2nd row), and network configurations (3r d row).
Pooling or unpooling operations are performed after each encoder module or before each decoder module. The pooling window is set to 2 × 2 with a stride of 2.

A0 A1 A2 A3 A4 B4 B3 B2 B1
128 × 128 64 × 64 32 × 32 16 × 16 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128
2× conv 2× conv 3× conv 3× conv 3× conv unpooling unpooling unpooling unpooling[
3 × 3, 64

] [
3 × 3, 128

] [
3 × 3, 256

] [
3 × 3, 512

] [
3 × 3, 512

]
3× conv 3× conv 3× conv 2× conv

pooling pooling pooling pooling -
[
3 × 3, 512

] [
3 × 3, 512

] [
3 × 3, 256

] [
3 × 3, 128

]
individuals present in the training sequences. In general, we
associate the identity representation eid with a one-hot en-
coding zid to indicate the score of each identity:

zid = fcls(eid; θcls), fcls : RWe×He×Ci → RN, (12)

where fcls(·; θcls) is the identity classification mapping with
parameters θcls . The identity task is trained using N-way
cross-entropy loss:

`cls =
1
N

N∑
n=1

znlogyn + (1 − zn)log(1 − yn), (13)

where zn denotes the softmax activation of the n-th element
in zid . yn is the n-th element of yid , which is the one-hot
identity annotation vector with a 1 for the correct identity
and all 0s for others.

Given (9), (11) and (13), the entire network can be trained
end-to-end by optimizing:

argmin
θenc,θdec,θtr n,θcls

T∑
t=1

`tdet + λ`
t
reg + γ`

t
cls, (14)

where λ weights the supervision from the identity task. Note
that the identity constraint is applied at every time step.

It has been shown in [58] that learning the face align-
ment task together with correlated tasks, e.g. head pose, can
improve the fitting performance. We have the similar obser-
vation when adding face recognition task to the alignment
task. More specifically, we found that supervised identity
disentangling can significantly improve the generalization as
well as fitting accuracy at test time. In this case, the factors
are better decoupled, which facilitates the temporal recurrent
learning to better handle variations over time.

Fig. 5: Illustration of the pooling/unpooing with indices (left) and the residual unit
(right) used inC1. The corresponding pooling and unpooling share pooling indices in
a 2-bit switch for each 2 × 2 pooling window. 1 × 1 convolutional layers are used in
the residual unit to cut down the number of network parameters.

4 Network Architecture

All modules are embedded in a unified framework that can
be trained end-to-end. We present details of network designs
for efficient training and robust performance at test time.

4.1 Variant Designs of Encoder-Decoder

To best evaluate the proposed framework, we investigate two
variant designs of the encoder-decoder. Specifically, the en-
coder is designed based on either VGGNet [44] or ResNet
[14], while the decoder is designed to match the correspond-
ing encoder.

VGGNet-based encoder-decoder. Figure 4 illustrates
the network architecture and Table 1 presents the network
specification. The encoder is designed based on a variant of
the VGG-16 network [44, 21]. It has 13 convolutional layers
with constant 3 × 3 filters which correspond to the first 13
convolutional layers in VGG-16. We can, therefore, initialize
the training process from weights trained on large datasets
for object classification.We remove all fully connected layers
in favor of a fully convolutional manner [26] and output
identity and pose/expression feature maps in the bottleneck.
This strategy not only reduces the number of parameters from
117M to 14.8M [3], but also preserves spatial information
in high-resolution feature maps instead of fully-connected
feature vectors, which is crucial to our localization task.
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Fig. 6: Network architecture of ResNet-based encoder fenc and decoder fdec . The encoder (C0−4) and the decoder (D4−1) are not symmetrical. The encoder is much deeper
than the decoder, i.e. 51 vs. 4 modules. Similar to the VGGNet-based design, the dimension of the output response map z is half of the dimension of the input image x. Residual
based skip connections (E1−3) are designed to merge hierarchical features at different resolutions in capturing comprehensive spatial information.

Table 2: Network specification of ResNet-based encoder fenc and decoder fdec : module names (1st row), output sizes (2nd row), and network configurations (3r d row). Strides
of 2 are used at the end of each encoder or decoder module to halve or double the dimension of feature maps. The residual based skip module E1−3 are specified in Table 3.

C0 C1 C2 C3 C4 D4 D3 D2 D1
128 × 128 64 × 64 32 × 32 16 × 16 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128
1× conv 3× conv 8× conv 36× conv 3× conv 1× dconv 1× dconv 1× dconv 1× dconv[
7 × 7, 64
strid, 2

] 
1 × 1, 64
3 × 3, 64
1 × 1, 256



1 × 1, 128
3 × 3, 128
1 × 1, 512




1 × 1, 256
3 × 3, 256
1 × 1, 1024




1 × 1, 512
3 × 3, 512
1 × 1, 2048




2 × 2, 512
stride, 2

1 × 1, 1024



2 × 2, 256
stride, 2

1 × 1, 512



2 × 2, 128
stride, 2

1 × 1, 256




2 × 2, 64
stride, 2

1 × 1, 128


There are 5 max-pooling layers with 2 × 2 pooling win-

dows and a constant stride of 2 in the encoder to halve the
resolution of feature maps after each convolutional stage.
Although max-pooling can help to achieve translation in-
variance, it inevitably results in a considerable loss of spatial
information especially when several max-pooling layers are
applied in succession. To solve this issue, we use a 2-bit code
to record the index of the maximum activation selected in a
2 × 2 pooling window [56]. As illustrated in Figure 5, the
memorized index is then used in the corresponding unpool-
ing layer to place each activation back to its original location.
This strategy is particularly useful for the decoder to recover
the input structure from the highly compressed feature map.
Besides, it is much more efficient to store the spatial indices
than to memorize the entire feature map in float precision as
proposed in FCNs [26].

The decoder is nearly symmetrical to the encoder with a
mirrored configuration but replacing all max-pooling layers
with corresponding unpooling layers. The encoder is slightly
deeper than the decoder with one more encoding module.
Therefore the dimension of the output response map z is
half of the dimension of the input image x. We find that
batch normalization [17] can significantly boost the training
speed as it can effectively reduce internal shift within a mini
batch. Therefore, batch normalization and rectified linear
unit (ReLU) [32] are applied after each convolutional layer.

ResNet-based encoder-decoder. Figure 6 illustrates the
network architecture and Table 2 presents the network spec-
ification. The encoder is designed based on a variant of the
ResNet-152 [14], which is very deep with 50 residual units
of totally 151 convolutional layers. Figure 5 shows a residual
unit used in C1. 1 × 1 convolutional layers are used to cut

down the number of network parameters. According to [14],
the residual shortcut guarantees efficient training of the very
deep network, as well as improved performance compared to
[44]. Stride-2 convolutions instead of max poolings are used
at the end of each encoding module to halve the dimension
of feature maps.

Different from the VGGNet-based design, the encoder
and decoder are not symmetrical. The encoder is much
deeper than the decoder, which has only 4 upsampling mod-
ules of totally 4 convolutional layers. The practical consider-
ation is that the encoder has to tackle a complicated task, e.g.
understand the image and translate it to a low-dimensional
representation code, while the decoder’s task is relatively
simpler, e.g. recover a set of response maps to mark land-
mark locations from the representation code.We use stride-2
de-convolutions to double the dimension of feature maps in
each decoding module. Similar to the VGGNet-based de-
sign, the dimension of the output response map z is half of
the dimension of the input image x.

Another novel design of the encoder-decoder is the resid-
ual based skip connection as shown in Figure 6. The skip
modules are specified in Table 3. They bridge the feature
maps of encoder and decoder at different resolutions, which
can effectively merge hierarchical spatial information for ac-
curate landmark localization [33]. The skip shortcuts can
significantly speed up the training process, and enable us to
use a shallow decoder instead of a symmetrical one used in
the VGGNet-based design to reduce the network complexity.
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Table 3: Network specification of the residual based skipmodule. Each residual unit has
the same configuration as the one used in the corresponding layer of encoder. Therefore
we can perform element-wise addition of feature maps at different resolutions.

E3 E2 E1
16 × 16 32 × 32 64 × 64
3× conv 3× conv 3× conv

1 × 1, 256
3 × 3, 256
1 × 1, 1024



1 × 1, 128
3 × 3, 128
1 × 1, 512




1 × 1, 64
3 × 3, 64
1 × 1, 256


4.2 Spatial and Temporal Recurrent Learning

We employ simple but effective designs for the proposed
spatial and temporal recurrent learning to achieve a good
tradeoff between the network complexity and performance.

Spatial recurrent learning. Landmark detection and re-
gression are performed in recurrent steps. Particularly, the
first step detects partial landmarks that are robust to pose vari-
ations and partial occlusions, e.g. 7 landmarks for left/right
eye corners, nose tip, and mouth corners; then the second
step regresses all 68 landmarks based on the input image and
detection results. This coarse-to-fine strategy is important to
obtain efficient and robust spatial recurrent learning.

As mentioned in Section 3.2, the landmark detection
task outputs a set ofCd = 7 binary maps, in which the values
within a radius of 5 pixels around the ground truth are set to 1
and the values for the remaining background are set to 0. The
landmark regression task outputs a set of Cd = 68 heatmaps,
in which the correct locations are represented by Gaussian
with a standard deviation of 5 pixels. The two tasks share
the weights of the entire encoder-decoder except for the last
convolutional layer, which employs 512 1× 1 filters in order
to adapt to binary map or heatmap.

In either landmark detection or regression, the fore-
ground pixels are much less the background, which lead
to highly unbalanced loss contributions. To solve this issue,
we enlarge the positive loss defined in (9) and (11) by mul-
tiplying a constant weight to enforce the network pays more
attention to foreground pixels.

Temporal recurrent learning.The configuration is spec-
ified in Figure 7. We employ Long Short Term Memory
(LSTM) network [15, 34] to model ftrn, in which 256 hidden
units are used. We empirically set the number of successive
frames as T = 10 in (11). The prediction loss is calculated at
each time step and then accumulated after T steps for back-
propagation. Directly feeding the pose/expression represen-
tation epe into LSTM layers would lead to a slow training
speed as it needs a large number of neurons for both the input
and output. Instead, we apply average pooling and upsam-
pling with indices to compress epe to a 256d vector before
and after LSTM layers.

Fig. 7: Network configurations of temporal recurrent learning ftr n (left) and identity
constrained disentangling fcls . We apply average pooling and unpooling with spatial
indices to cut down the input and output complexity of LSTM modules. A compact
vector of 256d is used for identity representation to reduce the computational cost.

4.3 Identity Constraint

To facilitate the disentangling of identity and non-identity
embeddings in the bottleneck of the encoder-decoder, we
use a classification network to predict identity labels from
eid . fcls takes eid as input and applies average pooling to ob-
tain a 256d feature vector for identity representation. Instead
of using a very long feature vector in former face recognition
networks [47], e.g. 4096d, we use a more compact vector,
256d, to reduce the computational cost without losing recog-
nition accuracy [42, 46]. To avoid overfitting, 0.6 dropout is
applied, followed by a fully-connected layer with N neurons
to predict the entity using the cross-entropy loss defined in
(13), where N is the number of different subjects present in
training sequences.

5 Experiments

In this section, we first demonstrate the effectiveness of each
component in our framework, followed with performance
comparison against the state of the art on both controlled
and unconstrained datasets.

5.1 Datasets and Settings

Datasets. We conduct our experiments on both image and
video datasets. These datasets are widely used in face align-
ment and recognition. They present challenges in multiple
aspects such as large pose, extensive expression, severe oc-
clusion and dynamic illumination. Totally 7 datasets are used:

– Annotated Facial Landmarks in the Wild (AFLW) [22]
– Labeled Faces in the Wild (LFW) [25]
– Helen facial feature dataset (Helen) [24, 41]
– Labeled Face Parts in the Wild (LFPW) [4, 41]
– Talking Face (TF) [12]
– Face Movies (FM) [39]
– 300 face Videos in the Wild (300-VW) [43]

We list configurations and setups of each dataset in Table
4. For consistent comparisons, we followed [41, 40] for 68-
landmark annotation for Helen, LFPW, TF, FM and 300-VW.
Besides, 7-landmark annotations are generated based on the
annotation for all datasets to locate eye corners, nose tip and
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Table 4: The image and video datasets used in training and evaluation. LFW, TF, FM and 300-VW have both landmark and identity annotations. AFLW and 300-VW are split into
two sets for both training and evaluation, while the rest datasets are used for training.

AFLW [22] LFW [25] Helen [24] LFPW [4] TF [12] FM [39] 300-VW [43]
in-the-wild setting yes yes yes yes no yes yes
image number 21,080 12,007 2,330 1,035 500 2,150 114,000
video number - - - - 5 6 114

landmark annotation 21pt 7pt 194pt 68pt 68pt 68pt 68pt
subject number - 5,371 - - 1 6 105
used in training 16,864 12,007 2,330 1,035 0 0 90,000

used in evaluation 4,216 0 0 0 500 2150 24,000

mouth corners. The landmark annotation of LFW is given
by [25]. We manually labeled the identity for each video in
TF, FM, and 300-VW.

AFLW and 300-VW have the largest number of labeled
images. They are also more challenging than others due to
the extensive variations. Therefore, we used them for both
training and evaluation.More specifically, 80% of the images
in AFLW and 90 out of 114 videos in 300-VWwere used for
training, and the rest were used for evaluation. We sampled
videos to roughly cover the three different scenarios defined
in [9], i.e. "Scenario 1", "Scenario 2" and "Scenario 3",
corresponding towell-lit, mild unconstrained and completely
unconstrained conditions.

We performed data augmentation by sampling ten vari-
ations from each image in the image training datasets. The
sampling was achieved by random perturbation of scale (0.9
to 1.1), rotation (±15◦), translation (7 pixels), as well as hori-
zontal flip. To generate sequential training data, we randomly
sampled 100 clips from each training video, where each clip
has 10 frames. It is worth mentioning that no augmentation
is applied on video training data to preserve the temporal
consistency in the successive frames.

Comparedmethods.Wecompared the proposedmethod
with both regression based and deep learning based ap-
proaches that reported state-of-the-art performance in un-
constrained conditions. Totally 8 methods are compared:

– Discriminative Response Map Fitting (DRMF) [1]
– Explicit Shape Regression (ESR) [7]
– Supervised Descent Method (SDM) [53]
– Incremental Face Alignment (IFA) [2]
– Coarse-to-Fine Shape Searching (CFSS) [59]
– Deep Convolutional Network Cascade (DCNC) [45]
– Coarse-to-fine Auto-encoder Network (CFAN) [57]
– Deep Multi-task Learning (TCDCN) [58]

For image-based evaluation, we followed [1] to provide
a bounding box as the face detection output. For video-
based evaluation, we followed [39] to utilize a tracking-by-
detection protocol: a bounding box, which is calculated ac-
cording to the landmark prediction in the previous frame but
slightly enlarged, is used as the face detection result of the
current frame.

Training strategy. Our approach is capable of end-
to-end training on the video datasets. However, there are
only 105 different subjects presented in 300-VW, which can
hardly provide sufficient supervision for the identity con-
straint. To make full use of all annotated datasets, we con-
ducted the training through three steps. First, we train the
network without ftrn and fcls using image-based datasets,
i.e., AFLW [22], Helen [24] and LFPW [4]. Then, fcls is
engaged for identity constraint and fine-tuned together with
other modules using image-based LFW [25]. Finally, ftrn is
triggered and the entire network is fine-tuned using video-
based dataset, i.e. 300-VW [43].

In each step, we optimized the network parameters by
using stochastic gradient descent (SGD) with 0.9 momen-
tum.We used fixed learning rate started at 0.01 andmanually
decreased it to an order of magnitude according to the valida-
tion accuracy. fenc was initialized using pre-trained weights
of VGG-16 [44] or ResNet-152 [14]. Other modules were
initialized with Gaussian initialization [18]. The mini-batch
size was set to 5 clips that had no identity overlap to avoid
oscillations of the identity loss. We performed temporal re-
current learning in both forward and backward direction to
double the usage of sequential training corpus.

Evaluation protocol. To avoid overfitting, we ensure
that the training and testing videos do not have identity over-
lap on the 300-VW (16 videos share 7 identities). We used
normalized root mean square error (RMSE) [41] for fitting
accuracy evaluation. A predictionwith larger than 10%mean
error was reported as a failure [43].

5.2 Comparison of Encoder-decoder Variants

In Section 4.1, we proposed two different designs of encoder-
decoder: (1) VGGNet-based design with symmetrical en-
coder and decoder, which has been mainly investigated in
our former conference paper [37]; and (2) ResNet-based de-
sign with asymmetrical encoder, i.e., the encoder is much
deeper than the decoder. In particular, skip connections are
incorporated in bridging the encoder and decoder with hier-
archical spatial information at different resolutions.

We compared the performance of two encoder-decoder
variants on AFLW [22] and 300-VW [43]. The results are
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Table 5: Performance comparison of VGGNet-based and ResNet-based encoder-
decoder Variants. Network configurations are described in Section 4.1. Row 1-2:
image-based results on AFLW [22]; Row 3-4: video-based results on 300-VW [43].

Mean (%) Std (%) Time Memory
VGGNet-based 6.85 4.52 43.6ms 184Mb
ResNet-based 6.33 3.61 54.9ms 257Mb

VGGNet-based 5.16 2.57 42.5ms 184Mb
ResNet-based 4.75 2.10 56.2ms 257Mb

reported in Table 5. The results show that the ResNet-based
design outperforms the VGGNet-based variant with a sub-
stantial margin in terms of fitting accuracy (mean error) and
robustness (standard deviation). Much deeper layers, as well
as the proposed skipping shortcuts, contribute a lot to the im-
provement. In addition, the ResNet-based encoder-decoder
has very close computational cost to the VGGNet-based vari-
ant, e.g. the average fitting time per image/frame and the
memory usage of a trainedmodel, which should be attributed
to the custom residualmodule design and the proposed asym-
metrical encoder-decoder network.

5.3 Validation of Spatial Recurrent Learning

We validated the proposed spatial recurrent learning on the
validation set ofAFLW[22]. To better investigate the benefits
of spatial recurrent learning, we partitioned the validation set
into two image groups according to the absolute value of yaw
angle: (1) Common settings where yaw ∈ [0◦-30◦); and (2)
Challenging settings where yaw ∈ (30◦,90◦]. The training
sets are ensembles of AFLW [22], Helen [24] and LFPW [4]
as described in Table 4.

One-shot vs. Recurrent. We investigated four different
network configurations: (1) One-shot prediction using the
detection loss defined in (6); (2) One-shot prediction using
the regression loss defined in (8); (3) Recurrent prediction
using detection followed by detection; and (4) Recurrent
prediction using detection followed by regression. The mean
fitting errors and failure rates are reported in Table 6.

First, the results show that spatial recurrent learning can
instantly decrease the fitting error and failure rate, compared
with one-shot learning. The improvement is more significant
in challenging settings with large pose variations. Second,
though landmark detection is more robust in challenging set-
tings (low failure rate), it lacks the ability to predict precise
locations (small fitting error) compared to landmark regres-
sion. This fact proves the effectiveness of the proposed recur-
rent learning using detection-followed-by-regression loss.

Cascade vs. Recurrent. It is reasonable to compare the
proposed spatial recurrent learning with the widely used cas-
cade learning such as [45, 57]. For a fair comparison, we im-
plemented a two-step cascade variant of our approach. Each
network in the cascade has exactly the same architecture as

Table 6: Validation of spatial recurrent learning on AFLW [22] in Common and
Challenging settings. The detection and regression tasks are defined in Section 3.2.

.

Common (%) Challenging (%)
Error Failure Error Failure

One-shot Detection 6.05 4.62 8.14 12.4
One-shot Regression 5.92 4.75 7.87 14.5
Recurrent Det. & Det. 5.86 3.44 7.33 8.20
Recurrent Det. & Reg. 5.71 3.30 6.97 8.75

the spatial recurrent version but there is no weight sharing
among cascades. We fully trained the cascade networks us-
ing the same training set and validated the performance in
challenging settings.

The comparison is shown in Table 7. Unsurprisingly, the
spatial recurrent learning can significantly improve the fitting
performance. The underlying reason is the recurrent network
learns the step-by-step fitting strategy jointly, while the cas-
cade networks learn each step independently. It can better
handle the challenging case where the initial guess is usually
far away from the ground truth. Moreover, a single network
with shared weights can instantly reduce the memory usage
to one-half of the cascaded implementation.

5.4 Validation of Temporal Recurrent Learning

We validate the proposed temporal recurrent learning on
the validation set of 300-VW [43]. To better study the per-
formance under different settings, we split the validation set
into two groups: (1) 9 videos in common settings that roughly
match "Scenario 1"; and (2) 15 videos in challenging settings
that roughly match "Scenario 2" and "Scenario 3". The com-
mon, challenging and full sets were used for evaluation.

We implemented a variant of our approach that turns off
the temporal recurrent learning ftrn. It was also pre-trained
on the image training set and fine-tuned on the video training
set. Since there was no temporal recurrent learning, we used
frames instead of clips to conduct the fine-tuning which was
performed for the same 50 epochs.We showed the result with
and without temporal recurrent learning in Table 8.

For videos in common settings, the temporal recurrent
learning achieves 6.8% and 17.4% improvement in terms
of mean error and standard deviation respectively, while the
failure rate is remarkably reduced by 50.8%. Temporal mod-
eling produces better prediction by taking consideration of
history observations. It may implicitly learn to model the
motion dynamics in the hidden units from the training clips.

Table 7: Comparison of cascade and recurrent learning in challenging settings of
AFLW [22]. The latter improves accuracy with a half memory usage of the former.

Mean (%) Std (%) Memory
Cascade Det. & Reg. 6.81 4.53 468Mb
Recurrent Det. & Reg 6.33 3.61 257Mb
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Table 8: Validation of temporal recurrent learning on 300-VW [41]. ftr n helps to improve the tracking robustness (smaller std and lower failure rate), as well as the tracking
accuracy (smaller mean error). The improvement is more significant in challenging settings of large pose and partial occlusion as demonstrated in Figure 8.

Common Challenging Full
Mean (%) Std (%) Fail (%) Mean (%) Std (%) Failure (%) Mean (%) Std (%) Fail (%)

w/o ftr n 4.52 2.24 3.48 6.27 5.33 13.3 5.83 3.42 6.43
ftr n 4.21 1.85 1.71 5.64 3.28 5.40 5.25 2.15 2.82

Fig. 8: Examples of temporal recurrent learning on 300-VW [41]. The tracked subject
undergoes intensive pose and expression variations as well as severe partial occlusions.
ftr n substantially improves the tracking robustness (less variance) and fitting accuracy
(low error), especially for landmarks on the nose tip and mouth corners.

For videos in challenging settings, the temporal recur-
rent learning won with even bigger margin. Without ftrn, it
is hard to capture the drastic motion or changes in consec-
utive frames, which inevitably results in higher mean error,
std and failure rate. Figure 8 shows an example where the
subject exhibits intensive pose and expression variations as
well as severe partial occlusions. The curve showed our re-
current model obviously reduced landmark errors, especially
for landmarks on nose tip and mouth corners. The less oscil-
lating error also suggests that ftrn significantly improves the
prediction stability over frames.

5.5 Benefits of Supervised Identity Disentangling

The supervised identity disentangling is proposed to better
decouple the temporal-invariant and temporal-variant factors
in the bottleneck of the encoder-decoder. This facilitates the
temporal recurrent training, yielding better generalization
and more accurate fittings at test time.

To study the effectiveness of the identity constraint, we
removed fcls and follow the exact training steps. The testing
accuracy comparison on the 300-VW [41] is shown in Figure
9. The accuracy was calculated as the ratio of pixels that
were correctly classified in the corresponding channel(s) of
the response map.

The validation results of different facial components show
similar trends: (1) The network demonstrates better gener-
alization capability by using additional identity cues, which
results in a more efficient training. For instance, after only

Fig. 9: Testing accuracy of different facial components with respect to the number
of training epochs. The proposed supervised identity disentangling helps to achieve
a more complete factor decoupling in the bottleneck of the encoder-decoder, which
yields better generalization capability and more accurate testing results.

10 training epochs, the validation accuracy for landmarks lo-
cated at the left eye reaches 0.84 with identity loss compared
to 0.8 without identity loss. (2) The supervised identity in-
formation can substantially boost the testing accuracy. There
is an approximately 9% improvement by using the additional
identity loss. It worth mentioning that, at the very beginning
of the training (< 5 epochs), the network has inferior testing
accuracywith supervised identity disentangling. It is because
the suddenly added identity loss perturbs the backpropaga-
tion process. However, the testing accuracy with identity loss
increases rapidly and outperforms the one without identity
loss after only a few more training epochs.

5.6 General Comparison with the State of the art

We compared our frameworkwith both traditional approaches
and deep learning based approaches. Themethodswith hand-
crafted features include: (1)DRMF [1], (2)ESR [7], (3)SDM
[53], (4) IFA [2], and (5) PIEFA [39]. The deep learning
based methods include: (1) DCNC [45], (2) CFAN [57], and
(3) TCDCN [58]. All these methods were recently proposed
and reported state-of-the-art performance. For fair compari-
son,we evaluated thesemethods in a tracking protocol: fitting
result of current frame was used as the initial shape (DRMF,
SDM and IFA) or the bounding box (ESR and PIEFA) in
the next frame. The comparison was performed on both con-
trolled, e.g. Talking Face (TF) [12], and in-the-wild datasets,
e.g. Face Movie (FM) [39] and 300-VW [43].
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Table 9: Mean error comparison with state-of-the-art methods on multiple video validation sets. The top performance in each dataset is highlighted. Our approach achieves the
best fitting accuracy on both controlled and unconstrained datasets.

.

7 landmarks 68 landmarks
TF [12] FM [39] 300-VW [43] TF [12] FM [39] 300VW [43]

DRMF [1] 4.43 8.53 9.16 ESR [7] 3.49 6.74 7.09
ESR [7] 3.81 7.58 7.83 SDM [53] 3.80 7.38 7.25
SDM [53] 4.01 7.49 7.65 CFAN [57] 3.31 6.47 6.64
IFA [2] 3.45 6.39 6.78 TCDCN [58] 3.45 6.92 7.59

DCNC [45] 3.67 6.16 6.43 CFSS [59] 3.04 5.67 6.13
RED-Net (Ours) 2.89 5.14 5.29 RED-Net (Ours) 2.77 4.93 5.15

We report the evaluation results for both 7 and 68 land-
mark setups in Table 9. Our approach achieves state-of-
the-art performance under both settings. It outperforms oth-
ers with a substantial margin on all datasets under both 7-
landmark and 68-landmark protocols. The performance gain
is more significant on the challenging datasets (FM and 300-
VW) than controlled dataset (TF). Our alignment model runs
fairly fast, it takes around 40ms to process an image using
a Tesla K40 GPU accelerator. Please refer to Figure 10 for
fitting results of our approach on FM [39] and 300-VW [43],
which demonstrate the robust and accurate performance in
large pose/expression changes, illumination variations and
partial occlusions.

6 Conclusion

In this paper, we proposed a novel recurrent encoder-decoder
network for real-time sequential face alignment. It utilizes
spatial recurrency to train an end-to-end optimized coarse
to fine landmark detection model. It decouples temporal-
invariant and temporal-variant factors in the bottleneck of the
network, and exploits recurrent learning at both spatial and
temporal dimensions. Extensive experiments demonstrated
the effectiveness of our framework and its superior perfor-
mance. The proposed method provides a general framework
that can be further applied to other localization-sensitive
tasks, such as human pose estimation, object detection, scene
classification, and others.
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