
Discriminative Multiple Target Tracking

Xiaoyu Wang1 Gang Hua2 and Tony X.Han3

1 University of Missouri xw9x9@mail.missouri.edu
2 Nokia Research Center ganghua@gmail.com
3 University of Missouri hantx@missouri.edu

In this chapter, we introduce a metric learning framework to learn a single dis-
criminative appearance model for robust visual tracking of multiple targets.
The single appearance model effectively captures the discriminative visual in-
formation among the different visual targets as well as the background. The
appearance modeling and the tracking of the multiple targets are all cast
in a discriminative metric learning framework. We manifest that an implicit
exclusive principle is naturally reinforced in the proposed framework, which
renders the tracker to be robust to cross occlusions among the multiple tar-
gets. We demonstrate the efficacy of the proposed multiple target tracker on
benchmark visual tracking sequences, and real-world video sequences as well.

1 Introduction

Visual tracking of multiple targets has been very active research in the past
years [29, 7, 28, 18, 22, 21], largely due to its essentiality in video surveillance,
and more emerging applications such as internet video annotation. To robustly
track the multiple objects, firstly we need to model the visual targets, either
based on contour shape or visual appearances. Then a matching algorithm
match the image observation data with the models of the multiple targets.
Appearance based modeling has induced a lot of attention due to its richness
in representation.

For visual appearance modeling of the multiple visual targets, one may
model the different visual target separately, e.g., either a generative model
is built for each visual target to capture the visual variation [10, 15, 20, 27,
22, 21], or a discriminative model is built for each target to discriminate it
from the background [3, 8, 4, 5]. Typical generative model for modeling visual
target include appearance based subspace model [10, 15, 20] obtained using
embedding methods such as principal component analysis [10, 20], or Gram-
Schmidt decomposition [15], as well as Gaussian mixture model [17] learned
from the Expectation-Maximization (EM) algorithm [11].
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On the other hand, discriminative appearance models leveraged supervised
learning algorithms to training a classification function to differentiate the ap-
pearances of the visual targets from the background. For example, support
vector machine (SVM) and Boosting cascade classifier is adopted in [3] and
[7], respectively, for training discriminative visual models, an ensemble classi-
fier based on Boosting is leveraged in [4], a linear discriminative classifier is
employed by [8], and a multiple instance Boosting classifier is utilized in [5].
A set of positive examples representing the target object and a set of negative
examples representing the background are needed to train the discriminative
model.

Compared to generative models, discriminative models aim directly on dif-
ferentiating the visual target from the background clutter, hence they may be
more desirable for robust visual tracking. However, separating the discrimi-
native appearance modeling efforts for the multiple targets is problematic be-
cause each model is only focusing on differentiating the associated target with
the background where the target presented. The discriminative information
among the different visual targets themselves are totally ignored. Effectively
capturing the discriminative information among the different visual targets
may be vital in dealing with cross occlusions incurred among the multiple
targets.

In this chapter, we present a discriminative formulation to learn an joint
discriminative appearance model for discriminating the multiple visual targets
from the background, as well as discriminating the multiple targets them-
selves. This formulation is cast under a discriminative metric learning frame-
work proposed by Globerson and Roweis [12]. A nice property of this dis-
criminative formulation is that the learning of the joint model only needs to
optimize a convex function using gradient descent, where the optimal solution
is guaranteed. Moreover, in our formulation, the visual matching process to
track the multiple targets is also optimizing the same objective function as
what we used to learn the visual model.

The visual matching process in our tracking algorithm can also be effi-
ciently performed by gradient based optimization using any modern nonlinear
optimization packages, such as the one proposed in [31]. This put our multiple
target tracking algorithm into the literature of gradient based visual track-
ing algorithms [13, 9, 30, 14, 26]. Gradient based tracking algorithms directly
match the visual model with the image observations based on the gradient
of the objective function w.r.t. the motion parameters. It does not make any
additional assumptions of the motion and observation models, which may of-
ten required in visual tracking algorithms based on hypothesis generation and
observation verification, such as Kalman filter (KF) [19], probabilistic data
association filter (PDAF) [6], and particle filter [16].

Due to the mutual discrimination of the appearance models of the different
visual targets reinforced in the learning process, and the joint optimization
of multiple motions, our tracking algorithm reinforces an implicit exclusive

principle [21]. Exclusive principle, which is firstly defined by MacCormick and
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Blake [21] states that no two visual targets shall account for the same image
observation, which is vital to handle and being robust to occlusions when
dealing with multiple objects tracking. Notice that our proposed formulation
for discriminative visual modeling of multiple visual appearances may not be
utilized for tracking multiple identical objects in a visual scene. Nevertheless,
exact identical multiple objects are scarce in real-world videos. Therefore, this
limitation may not hinder the general applicability of the proposed multiple
target tracking algorithm.

When compared with previous methods for multiple target tracking algo-
rithms, the proposed modeling and matching framework presents three ad-
vantages. Firstly, it presents a discriminative formulation to simultaneously
model the appearances of multiple objects, which not only discriminates the
visual target from the background, but also seeks for mutual discrimination
among the different visual targets. Secondly, in our formulation, an exclusive
principle is naturally reinforced, which renders it robust to handle cross oc-
clusions among the different visual target. Thirdly, our proposed framework is
easily adapted for online model updating, which is supported by a principled
criterion derived from the objective function to select the optimal set of visual
examples for online modeling and matching.

2 Appearance and motion model of multiple targets

2.1 Metric learning framework

We cast our discriminative appearance and motion model of mutliple tar-
gets by leveraging a metric learning framework similar to Globerson and
Roweis [12]. Suppose we have a set of labeled training examples X = {xi,j ∈
R

N , oij}
ni

j=1, where oij = 0 indicates background, and oij = 1, . . . , K indicates
the visual samples of each of the K visual targets we are intending to track.
N is the dimension of examples. Let S0 = {(x0j , o0j = 0)}n0

j=0, and also let

Si = {(xij , oij = i)}ni

j=0 for any i = 1, . . . , K, such that n =
∑K

i=0(ni + 1) and

X =
⋃K

i=0 Si. xij means the jth example for tracking target i(i = 0 implies
background). In our experiments, each xij is usually a w×h image patch and
N = w × h.

We further denote ∀i > 0, xi0 = I(mi) indicates each of the K visual
targets we want to track in the current frame where mi ∈ R

L is the motion
parameters we want to recover. I(mi) is a mapping which maps the motion
parameters, affine transformation parameters for example, to image patch.
Obviously, the label oi0 of I(mi) is i, since it represents the ith visual target.
For convenience, we will either use xi0 or I(mi) in our presentation depending
on if we are learning for the appearance model or performing the visual match-
ing for tracking of the multiple target. Following Globerson and Roweis [12],
we propose to learn a Mahalanobis form metric, i.e.,
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dA(xij ,xkl) = (xij − xkl)
T A(xij − xkl). (1)

to achieve our unified formulation, where A is a positive semi-definite matrix
we need to learn from data. Define, for each xij ∈ X , a conditional probability

pA(xkl|xij) =
1

Zij

e−dA(xij,xkl) =
e−dA(xij,xkl)

∑

p6=i∨q 6=j e−dA(xij,xpq)
. (2)

The ideal distribution of the optimal A shall collapse samples from the same
class to be a single point. Specifically, the ideal distribution shall take the
following form,

p0(xkl|xij) =

{

1
nc

oij = okl = c

0 oij 6= okl
. (3)

where c ∈ {0, 1, . . . , K}. Recall that xi0 = I(mi). Denote M = {m1,m2, . . . ,mK},
we define

f(A,M) =
n

∑

i=0

KL (p0(xkl|xij)||pA(xkl|xij))

= C +

K
∑

i=0

ni
∑

j 6=k=1

1

ni

(dA(xij ,xik) + log Zij) . (4)

where C =
∑

yij=ykl=c
1

nc
log 1

nc
is a constant. To have pA(xkl|xij) to be as

close to p0(xkl|xij) as possible, we only need to proceed to minimize f(A,M).
More formally, we formulate the following optimization problem,

min f(A,M) (5)

s.t. ∀a ∈ R
N ,aTAa ≥ 0. (6)

where the constraint in Eq. 6 confines A to be a positive semi-definite matrix
(PSD). Solving the above optimization problem would allow us to jointly
obtain the optimal discriminative appearance models for all of the multiple
visual targets defined by A, and track the motions of the all of them as well,
which is defined by m. We solve both by efficient gradient based search, as
we shall detail in the following sub-sections.

2.2 Joint appearance model estimation

In formulation, discriminative appearance modeling refers to identifying the
optimal A to define the discriminative metric between visual samples. Assume
that the motion parameter m is fixed, following [12], it is easy to figure out
that f(A,m) is a convex function of A. Taking the derivative of f(A,M)
with respect to A, we have

∂f(A,M)

∂A
=

K
∑

i=0

ni
∑

j=0

K
∑

k=0

nk
∑

l=0

ωij(kl)(xkl − xij)(xkl − xij)
T (7)
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where
ωij(kl) = p0(xkl|xij) − pA(xkl|xij). (8)

Similar to [12], we take a gradient projection algorithm [23] to obtain the
optimal A. Specifically the following two steps are performed:

1. Gradient Descent:A = A − ǫ∂f(A,m)
∂A

, where ǫ determines the step
length for gradient descent.

2. PSD Projection: Compute the eigen-value decomposition of A, i.e.,
{λk,uk}N

k=1 such that A =
∑N

k=1 λkuku
T
k , set A =

∑N
k=1 max(λk, 0)uku

T
k .

The first step above performs gradient descent, and the second step reinforces
the constraint to make A to be a positive semi-definite matrix. These two
steps are iterated until convergence. Since f(A,M) is a convex function of A

fixing M, the iteration of these two steps is guaranteed to find the optimal
solution of A.

2.3 Motion parameter optimization

In this subsection, we fix the discriminative appearance model A, and develop
the gradient descent search for the motion parameters M. Not losing any
generality, we assume that each mi, ∀i ∈ {1, 2, . . . , K} is a linear motion
model, i.e.,

[

xi

yi

]

=

[

ai bi

ci di

] [

x′
i

y′
i

]

+

[

ei

fi

]

(9)

where [x′
i, y

′
i]

T is the canonical coordinates for the labeled examples, and
[xi, yi]

T is the coordinates in the target video frame. This linear motion model
covers a wide variety of visual motions such as translation, scaling, similarity,
as well as full affine motion. We proceed to derive the gradient based search
for the full affine motion model.

Recall that xi0 = I(mi) is the only term that involves the motion param-
eter mi, ∀i ∈ {1, 2, . . . , K}, according to chain rule, we have

∂f(A,M)

∂mi

=
∂f(A,M)

∂xi0

∂xi0

∂mi

. (10)

With some mathematical manipulations, it can be shown that

∂f(A,M)

∂xi0
=

4

ni

ni
∑

j=1

A(xi0 − xij) − 2
K

∑

k=1

nk
∑

l=0

βi0(kl)A(xi0 − xkl). (11)

where
βi0(kl) = pA(xkl|xi0) + pA(xi0|xkl) (12)

For any parameter ξi ∈ mi, again, applying chain rule, we have

∂xi0

ξi

=
∂I(mi)

∂ξi

=
∂I(mi)

xi

∂xi

∂ξi

+
∂I(mi)

yi

∂yi

∂ξi

, (13)
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where ∂I(mi)
xi

and ∂I(mi)
yi

represents the image gradient in the target frame in
horizontal and vertical directions, respectively. For ease of notation, we denote
them as Ixi

and Iyi
respectively. Following Eq. 13, we have, ∀i ∈ {1, 2, . . . , K}

∂xi0

∂ai

= Ixi
x′

i
∂xi0

∂bi
= Ixi

y′
i (14)

∂xi0

∂ci

= Iyi
x′

i
∂xi0

∂di
= Iyi

y′
i (15)

∂xi0

∂ei

= Ixi

∂xi0

∂fi
= Iyi

(16)

Therefore, we may easily calculate the gradient of f(A,M) with respect to
mi by applying Eq. 10 to Eq. 16. Then we can take a gradient descent step
to recover the optimal motion parameter mi, ∀i ∈ {1, 2, . . . , K}, i.e.,

mi = mi − η
∂f(A,mi)

∂mi

(17)

where the step length η could be estimated, for example, by a quasi-Newton
method such as L-BFGS [31].

3 Online matching and updating multiple models

Another challenge in appearance model based multiple target tracking is to
robustly adapt the model to the visual environment. This adaptation may
be indispensable for robust tracking since the target objects may go through
drastic visual changes from environmental conditions such as extreme lighting,
occlusions, casting shadows, and pose and view changes. The metric learning
formulation we proposed in Eq. 5 enables us to naturally fulfill this task. We
proceed to present it in a more formal way.

Extended from the notation of Sec. 2, let X (t) =
⋃

S(t)
i be the set of

n labeled examples we maintain at time instance t. We also let At be the

current discriminative appearance model, and Mt = {m(t)
i }K

i=1 be the motion

parameters we need to recover. Hence we have x
(t)
i0 = I(t)(m

(t)
i ). At each

time instant t, given X (t) and At, we run the gradient descent optimization

algorithm outlined in Sec. 2.3 to obtain the optimal motion parameters m̂
(t)
i ,

∀i ∈ {1, 2, . . . , K}. This fulfills our visual matching and tracking task. Then we

perturb each m̂
(t)
i in turn to generate a set of α background samples S(t+1)

0α

to replace the oldest α samples subset S(t)
0α in X (t). In practice, we sample

examples around the current tracked target with a relative bigger distance to
replace old background examples. This results in the new labeled examples
X (t+1), i.e.,

X (t+1) = (X (t) \ S(t)
0α ) ∪ S(t+1)

0α . (18)
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Since m
(t)
i has been recovered, for ease of presentation, we abuse the nota-

tion to temporally define x
(t+1)
i0 = It(m

(t)
i ), ∀i ∈ {1, 2, . . . , K}. With X (t+1)

We can then run the gradient projection optimization algorithms outlined in
Sec. 2.2 to obtain the optimal At+1. To proceed with the next matching step

to identify the optimal It+1(m
(t+1)
i ), ∀i ∈ {1, 2, . . . , K}, we need to retire one

example for each visual target in the current X (t+1) to update the example set,
we propose a least consistent criterion based on the contribution of each of the
target examples to the unified cost function f(At+1,Mt). Indeed, fixing At+1

and Mt, f(At+1,Mt) is a function of X (t+1), i.e., f(At+1,Mt) = g(X (t+1)).
We can similarly define a g(·) function for any subset of X (t+1) based on Eq. 4.
Therefore, for each xij ∈ X (t+1), a consistent criterion can be defined as

c(xij) = g
(

X (t+1)
)

− g
(

X (t+1) \ {xij}
)

. (19)

It is easy to understand that the larger c(xij) is, the more contribution xij

has made to f(At+1,mt). If the label o(xij) = i, a larger c(xij) indicates that
xij is not very compatible to the rest of the visual samples of target i, and
hence should be retired from the sample set. More formally, we select

x⋆
i = arg max

x∈X (t+1),o(x)=ic(x) (20)

to retire from X (t+1), for each i ∈ {1, 2, . . . , K}. In real operation, we only

need to change the numbering of x
(t+1)
i0 = It(mt) to the numbering of x⋆

i ,

then we reset x
(t+1)
i0 = It+1(m

(t)
i ), ∀i ∈ {1, 2, . . . , K}, which are initialized to

kick off the matching process to recover the optimal motion parameter Mt+1.
The above steps will be iterated from time instant t to time instant t + 1.

Therefore we track the multiple visual targets and estimate the joint dis-
criminative visual appearance model in an online fashion, which are all based
on efficient gradient based optimization. Most previous approaches resort to
heuristics or the oldness of visual samples to select the optimal set of online
training examples. While our proposed selection criterion for positive exam-
ples in Eq. 20 is derived directly from the objective function of the proposed
formulation in a principled fashion. It manifests another benefit of our pro-
posed metric learning framework for discriminative appearance modeling and
matching of multiple visual objects.

To initialize the tracking algorithm, we can either run an object detector
if it applies, such as a face detector [24] or a human detector [25], if we are
tracking a number of faces or persons, or request the users to manually spec-
ify the tracking rectangles for the multiple visual target. Then the initialized
tracking rectangles are perturbed to form the initial set of labeled examples
X (1). More specifically, perturbed rectangles with sufficient overlap with the
initial rectangles are regarded as the visual samples of the corresponding tar-
gets, while those perturbed rectangles which are deviated too much from the
initial rectangles are deemed as visual samples of the background. This boot-
straps learning for the optimal discriminative appearance model A2, which
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is then adopted to obtain the optimal motion parameter M2. This processes
will be repeated as described above.

Last but not least, when maintaining the labeled example set X (t), we
fix a small set of β background and β visual examples extracted from the
initialization frame for each of the visual target in the working set, i.e., we
never replace them with new examples. This treatment is very important to
keep our discriminative appearance model stable and avoid it to be drifted
too drastically in the visual tracking process.

4 Discriminant exclusive principle

We argue that the proposed joint formulation for multiple object tracking
naturally incorporates an exclusive principle [22] in the matching process.
Therefore it is robust to handle occlusions among the different visual objects.
The exclusive principle states that no two visual tracker shall occupy the same
image observation. Our proposed algorithm naturally achieved it because of
the joint discriminative appearance model A, which reinforces the mutual
discrimination of the appearances between two visual targets I(mi) and I(mj).
To see this more clearly, given an optimal A, if I(mi) and I(mj) occupy
similar image regions (a.k.a, mj

.
= mi), and thus have very similar visual

appearances, the mutual discriminative information encoded in A would incur
a large value for f(A,M). Therefore, mj = mi is not an optimal solution to
M. In other words, the optimal motion parameter M is more likely to occur
when ∀1 ≤ i < j ≤ K, mj 6= mi. Therefore, the exclusive principle among
the different visual targets are naturally reinforced, which makes our proposed
framework for multiple target tracking to be more robust to cross occlusions
among the different visual targets.

5 Experiments

5.1 Visualization of learned appearance model

The appearance model A defines an discriminative embedding to differen-
tiate the multiple visual objects from the background. Each eigenvector of
A is corresponding to one basis vector of the embedding. To have a better
understanding on how the appearance model A functions, in Fig. 1, we visu-
alize the top 12 eigenvectors of an optimal A estimated at frame 512 when
tracking three persons in the CAVIAR sequence. As clearly observed, they
encode the contour and shape information of the target objects. It is quite
sensible because A is used in our discriminative framework for discriminating
the multiple objects from the background,and also reinforce the mutual dis-
criminations among the different objects. The shape information is probably
the most reliable one for the achieving that.



Discriminative Multiple Target Tracking 9

5.2 Multiple target tracking for different video sequences

We evaluate the tracker on two datasets: the CAVIAR [1] videos and the ETH
Mobile Scence(ETHMS) [2]. For each single object, we randomly extract 20
positive examples to form a positive set tightly around the initial bounding box
of the object. The number of negative examples around a single object is also
set to be 20. We will have 20∗N negative examples for each object, supposing
that we have N objects to be tracked. A confliction solving procedure is
employed to avoid extracting a positive example from one object as a negative
of another. After obtaining the matched patch in the current frame, negative
examples would be generated by randomly selecting patches with a minimum
and maximum distance toward the positive. The motion parameters (affine
parameters) are kept the same in this step. Half of the positive and negative
examples would be kept without updating to help the tracker recover from
big changes and occlusions. The normalized pixel intensity is used as the
feature. We downsample the image patches to 20 × 20, regardless of their
original dimensions(The feature dimension for each object must be the same
to fit into the metric framework). This procedure is implemented by solving
a warping equation instead of directly sampling the image patch, which will
provide a smoother objective function for the gradient descent optimization
in the second step of the iteration.

Figure 2 shows the tracking results for a video from CAVIAR in which
three persons walk on the corridor with big scale changes and occlusions. The
objects encounter big occlusion by a crossing person from key frame 816. We
present the sample results obtained by our tracker, the ILT [20] tracker and
the Meanshift [9]. Our tracker shows quite robust responses.The ILT tracker
loses the target when it’s occluded by a person crossing the corridor. The
Meanshift tracker shifts because it cannot deal with big scale change.

Fig. 1. The top 12 eigenvectors (with the descent order from top left to bottom
right) for the discriminative matrix A.
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In order to give quantitative performance comparison with these two
works, we employ a criterion called Average Tracking Precision(ATP) to do
the evaluation, enlighted by the PASCAL grand challenge. More formally, for
each tracking task, a ground truth mask for the object of interest is labeled in
each frame j. The mask is represented as a point set Gj which is a collection
of all points in the ground truth bounding box. The tracking result is repre-
sented as a point set Tj at frame j. (xi, yi) ∈ Gj or Tj indicates that the pixel
at (xi, yi) is associated with the target. For an ideal tracker, ∀j, Gj = Tj .

For each frame j, the tracking precision rj is defined as: rj = |Gj∩Tj |/|Gj∪
Tj |. Noticing that rj ∈ [0, 1], the ATP for a tracker of an object in a video
clip is defined as:

ATP =
1

N

N
X

j=1

rj =
1

N

N
X

j=1

|Gj ∩ Tj |

|Gj ∪ Tj |
, (21)

where N is the running length of the video clips in frame number. For an ideal
tracker, ATP ≡ 1. We use it as the exclusive quantitative measure to compare
the performance of the TUDAMM with other state-of-the-art trackers.

Because neither of the other two algorithms support multiple object track-
ing, we track the objects independently to obtain results from the two trackers.
Figure 3 shows the ATP curve. The TUDAMM tracker gives the best per-
formance, with an ATP above 0.7. Recall that in PASCAL grand challenge, a
detection with an overlap bigger than 0.5 with ground truth would be treated
as a true detection. The ATP value 0.7 implies perfect tracking performance.

Fig. 2. Sampled multiple object tracking results on the Caviar dataset. Key frame
NO.:513,809,817,828. The first row: our tracking results; the second row: tracking
results of ILT; the third row: tracking results of Meanshift.
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Figure 4 presents sampled key frames from the result of tracking three
persons on a street [2]. The person with red coat is occluded by a tree during
the tracking. Figure 5 presents sampled tracking results for a video from

500 600 700 800 900 1000 1100
0.4

0.5

0.6

0.7

0.8

0.9

1

Frame number

A
T

P

ATP performance for mutltiple object tracking

 

 
TUDAMM
ILT
Meanshift

Fig. 3. Tracking performance comparison using ATP. Red curve: TUDAMM;Blue
curve: ILT; Black curve: Meanshift

Fig. 4. Multiple Tracking result on the ETH dataset
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CAVIAR dataset [1].

Fig. 5. Multiple Tracking result on the Caviar dataset

Figure 6 shows the tracking result for a horse racing video in which cross
occlusion happens frequently. Our tracker show excellent performance. The
ILT tracker cannot locate the object very well and the fifth(left to right)
horse is completely lost during the tracking process. The Meanshift tracker is
not good at solving cross occlusions and the bounding box shifts drastically.

Fig. 6. Multiple Tracking results for a horse racing video. Key frame No: 3026,3143,
3202,3341. The first row:TUDAMM tracker;the second row:the Meanshift tracker;
the third row: the ILT tracker.

As we can clearly observe, our discriminative multiple targets tracker
present very robust tracking results under drastic visual variations induced
by illumination changes, scale changes, pose articulations, as well as mutual
occlusions.



Discriminative Multiple Target Tracking 13

6 Discussions, Conclusion and Future Work

We proposes a discriminative metric learning framework for robust tracking
of multiple targets. It not only seeks for appearance models to discriminate
the multiple foreground targets from the background, but also try to recover
subtle discriminations between two different visual targets. Our experiments
on a set of challenging real-world video sequences demonstrated the robustness
of the proposed tracking algorithms in dealing with large visual variations and
cross-occlusions.

Future work may include further exploration of different type of filters for
further improving the robustness of the tracker under the same formulation.
Meanwhile, as discussed above, this framework may encounter problem if ob-
jects are nearly identical. We will further investigate this issue and explore
means of mitigate this issue. It may be addressed by posing strong dynamic
models learned online, we will defer all this to our future work.
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