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Abstract

We propose an approach to improving the detection re-

sults of a generic offline trained detector on a specific video.

Our method does not leverage visual tracking as most de-

tection by tracking methods do. Instead, the proposed de-

tection by detections approach can serve as a more confi-

dent initialization for detection by tracking methods. Dif-

ferent from other supervised detector adaptation methods,

we constrain the task to videos and no supervised labels for

the target video are required for the adaptation; we intend

to fill the gap between detection by tracking and pure de-

tection by frames. As a non-parametric detector adaptation

method, confident detections are collected to re-rank and to

group other detections. We focus on methods with high pre-

cision detection results since it is necessitated in real ap-

plication. Extensive experiments with two state-of-the-art

detectors demonstrate the efficacy of our approach.

1. Introduction

We have observed significant advancement of the re-

search on object detection in the past decade [3, 6, 1, 11, 15,

13, 31, 17, 27, 4, 22, 30]. Most previous methods perform

detection from static images. To detect objects in videos, a

large amount of work takes a tracking by detection and/or

detection by tracking approach [40, 1, 37, 9, 33, 7, 36, 2, 38,

8], where visual tracking is performed to further validate the

detection hypothesis, or detection results are leveraged for

robust tracking.

In tracking-by-detection or detection-by-tracking, most

often the detection results will serve as a cue to build

the matching method for tracking. The detection compo-

nent may be further improved with the result of a tracker

through online learning. But the improvement may be heav-

ily downgraded if we directly use the noisy detections to

initiate the tracker.

Since almost all state-of-the-art detectors are trained

from a large set of labeled examples, the performance of a

detector is inevitably degraded when the detector is applied

to a video taken under a visual condition which is very dif-

ferent from those of the training examples. Therefore, how

to adapt a learned generic detector to the specific visual con-

dition of a video becomes a very important problem to be

explored.

Many researchers have devoted their efforts in devel-

oping online learning/adaptation algorithms for detectors

[39, 23, 24, 25, 35, 10, 12, 18, 26]. For most of on-

line adaptation methods, an initial detector is firstly trained

from a small set of labeled examples. The initial detec-

tor is then enhanced with newly available labeled exam-

ples, which can be obtained from either background mod-

eling/subtraction [25, 10, 18, 26], or semi-supervised learn-

ing, such as self-training [23, 35], or co-training [24, 12]

However, background modeling/subtraction may not al-

ways be feasible especially when we are dealing with

unconstrained web videos. On the other hand, semi-

supervised learning is prone to introducing label noise,

which deteriorates the adaptation of a parametric model for

detection. Taking these facts into consideration, we propose

a non-parametric detector adaptation algorithm, which can

adapt an offline-trained frame-based object detector to the

visual characteristic of a specific video clip.

Unlike the tracking-by-detection and detection-by-

tracking approach, where the final trajectory is fulfilled by

tracking, our adapted detector is still performing detection

instead of tracking. It achieves higher precision than the

original detector on each target video. Therefore, it can

serve as a more reliable initialization for any tracking-by-

detection and detection-by-tracking methods.

To achieve this, the original detector with a low detection

threshold setting is firstly applied to the target video. All

detected visual examples are collected to form the candidate

detection pools with both positive and negative examples

pertaining to the target video. Dense features are extracted

from these visual examples to form a vocabulary tree, from

which a set of detected examples with high detection scores

are sparsely encoded to form the transfer classifier.

All detections from the original detector will be either
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Figure 1: The flow chart of our non-parametric transfer

learning method for video object detection.

validated or suppressed by the new classifier. Validated de-

tections which receive the highest support from the same

positive example can be further clustered into a group. An

interesting fact is that our vocabulary tree based classifier

can also serve as a recognition system to recognize or clus-

ter the identity of the detected objects. We sketch the flow

of our detection by detections approach in Figure 1.

The efficacy of the proposed method resides in our obser-

vation that a detectable video object should be confidently

detected at least once among all frames using the origi-

nal frame-based detector. Unlike the detection-by-tracking

approach, we do not leverage dense temporal smoothing.

In this sense, it serves as an intermediate approach, which

bridges the gap between the detection-by-tracking and the

pure frame-based detection. Hence our main contribution

is a simple and effective non-parametric detection by detec-

tionsmethod to extend any static-image-based object detec-

tor to video object detection, which needs neither the origi-

nal training data, nor manually labeled online examples.

The reminder of the paper is organized as follows. Re-

lated work is discussed in Section 2. Section 3 introduces

the details of the non-parametric detector adaptation tech-

nique. Experimental results are presented and discussed in

Section 4. We finally conclude in Section 5.

2. Related work

There is a large set of successful and enlightening work

in the area of object detection. Mainly popularized by the

seminal Viola-Jones detector [28], Haar wave-let [20] has

been widely used as the feature for general object detec-

tion. Lowe’s SIFT feature [14] made a breakthrough for

object recognition [19]. Viola et al. [29] leverage 3D Harr

features in spatiotemporal domain for pedestrian detection

from videos. The histogram of oriented gradient (HOG) [3]

has been demonstrated to be very effective for object detec-

tion in PASCAL VOC challenge [5].

Sliding window based holistic classification methods

have achieved many state-of-the-art performances [3, 6, 11,

27, 15, 17]. Various part-based models have been proposed

to deal with different visual complications such as partial

occlusions [34, 31], and pose variations [6]. Lin et al. [13]

employs a multiple instance learning method to achieve

part-based object detection which is robust to feature mis-

alignment.

Many previous works resort to vocabulary tree for scal-

able object recognition [16, 32, 19]. In this paper, we lever-

age a vocabulary tree to encode a visual example as a binary

vector for non-parametric detector adaptation. The pro-

posed non-parametric detector with adaptation can achieve

better detection accuracy in each target video when com-

pared with the original detector.

Our detection by detections algorithm can be formed as

a nonparametric transfer learning algorithm. According to

a recent survey [21], there is few work dealing with un-

supervised parameter-transfer learning and relation knowl-

edge transfer learning, mainly due to the complexity and the

sensitivity in parameter adaptation/settings. In contrast, the

proposed nonparametric transfer learning method is simple

and effective as validated in the experiments section.

3. Non-parametric detector adaptation

As illustrated in Figure 1, we set a generic human de-

tector to work on high recall and consequently low preci-

sion point. All detections from each of the individual video

frames are gathered to build a vocabulary tree using hi-

erarchical k-means [19]. The vocabulary tree is then ap-

plied to efficiently encode the set of most confident visual

detections as a set of binary vectors. A classifier is built

based upon these encoded positive examples. For any can-

didate detections, we measure its similarity to the positive

pool to determine the detection confidence. We proceed to

present the key technical components of our detector adap-

tation algorithm, i.e., the vocabulary tree encoding scheme

(Section 3.1), the matching algorithm on the resulting bi-

nary vector codes (Section 3.2), the transfer classification

algorithm (Section 3.3), and the nearest neighbor identity

grouping algorithm (Section 3.4).

3.1. Binary codes with a vocabulary tree

Given the set of detections D = {di|i = 1, 2, . . . , N}
extracted by a generic static frame based detector, we ap-
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ply the hierarchical k-means algorithm presented in [19]

due to its scalability and demonstrated performance. Often

the case, there is a confidence score associated with each

di ∈ D from the detector, which we denote as o(di) or in
short oi.

For each visual detection di ∈ D, we densely sample a

set of 16 × 16 image patches from the detection window,

denote as Pi = {pij |j = 1, 2, . . . , n}. For each image

patch, we extract HOG feature which is widely used to cap-

ture contour information of an object. The HOG feature

extraction will produce the feature vector fij ∈ R
m.

Taking a scheme similar to [32], we augment the vi-

sual feature vector with the position (xij , yij) of the patch
relative to its anchor position inside the detection win-

dow. This results in the final augmented visual descrip-

tor gij = [fij , xij , yij ], a p = m + 2 dimensional vec-

tor. We denote the set of all features extracted from di as

Gi = {gij |j = 1, 2, . . . , n}. The set of all augmented

feature vector, G = {Gi|i = 1, 2, . . . , N} is put into a hi-

erarchical k-means algorithm to induce a vocabulary tree T

of height l, with each of the r = kl+1
−1

k−1
nodes of the tree

labeled in level-order.

The vocabulary tree T naturally defines a mapping T

from gij ∈ R
p to cij ∈ B

r, where Br is an r dimensional

binary vector space. More specifically, if any g traverses

node q of the hierarchical k-means tree, then the qth bit of

cij is set to 1, otherwise it will be set to 0. We further define

the group mapping c(Gi) from G to c ∈ B
r, i.e.,

c(Gi) = ∪n
j=1

T(gij) = ∪n
j=1

cij (1)

where ∪ indicates the bitwise OR operation.

To encode a new visual example, i.e., a new candidate

detection window x, we also extract a set of augmented vi-

sual descriptors of the densely sampled image patches from

the window. This set of visual descriptors are then encoded

with Equation 1. This encoding process is illustrated in Fig-

ure 2; each visual example is encoded by an r dimensional

binary vector in the end. For convenience, we tolerate a

slight abuse of notation: we also use c(x) to denote the

binary vector encoding of a visual example x, which shall

follow all the patch feature extraction and vocabulary tree

encoding protocol outlined above. The meaning of the no-

tation is clear within the context.

The design of our binary codes is largely motivated by

the experimental evaluation of Moosmann et al. [16]. The

reason that binary encoding achieves better recognition re-

sults may be due to its robustness against noise by eliminat-

ing the perturbation caused by the frequency counting.

3.2. Similarity measure of the binary codes

Given the binary vector codes ci = c(xi) and cj =
c(xj) of two visual examples xi and xj , we adopt the

following similarity measure to compute the similarity be-

tween the two visual examples,

s(ci, cj) = exp

{

−
‖ci − cj‖

2

‖ci‖ · ‖cj‖

}

, (2)

where ‖c‖ indicates the number of non-zero bits in the

binary vector c. Because ci and cj are binary vectors,

‖ci − cj‖
2 is actually the hamming distance between them.

We further normalize the hamming distance using the L1

norm of the binary code. The normalized hamming dis-



tance is then transformed to a similarity measure by taking

the negative exponential. This normalization process is im-

portant because the binary vectors of large L1 norm will not

be over-penalized in the matching process. Certainly other

type of normalization such as L2 can also be used, and we

empirically evaluate the effects of different normalization

schemes in our experiments.

3.3. Transfer classification

To build our final transferred adaptive detector, we firstly

collect a set of positive visual detections of high confidences

which are higher than a threshold t,

E = {dk|dk ∈ D, o(dk) > t}, (3)

where E ⊂ D, composes our positive example pool. Each

dk ∈ E is further encoded by the induced vocabulary tree

T . This forms a set of binary codes to encode the positive

examples, i.e.,

C = {c(dk)|dk ∈ E} = {ck|dk ∈ E}}. (4)

We will use interchangeably E and C to represent the

positive pool when there is no confusion. Given any new

candidate detection or visual instance x, we decide whether

it is a real detection based on the following similarity scor-

ing, i.e.,

h(x) =
1

‖C‖

∑

ck∈C

s(c(x), ck). (5)

According to Equation 2, the similarity is achieved by

averaging the similarity between the detection and each of

the example in the positive pool. The averaging operation

is very helpful in dealing with noisy false positives in the

positive pool. We make the final classification decision by

assigning a confidence threshold ht, i.e.,

a(x) =

{

1 h(x) ≥ ht

0 h(x) < ht
. (6)

That is, if the average distance of the candidate x to ex-

amples in the positive pool E is sufficiently small, we de-

clare it to be a detection, otherwise, we reject it. For this

adaptive detector to work in each target video, we have

made an assumption that a video object would be detected

by the original generic detector in at least some of the video

frames. In our experiments, we manifest that this assump-

tion is indeed held in a variety of different videos if a state-

of-the-art detector is used.

3.4. Identity grouping of detections

The proposed encoding scheme enables us not only to

perform detector adaptation, but also to design an effec-

tive grouping algorithm to group the video object detections

based on their identities. This functionality is important to a

wide range of applications including video browsing, video

annotation, and people search from videos.

Our grouping algorithm clusters all detections by mea-

suring their similarities to a set of k representative exam-

ples. To select the k representative examples, we firstly run

k-means in our positive example pool C to cluster it into

k groups. For each cluster, we select the detection with

the highest detection confidence as its representative exam-

ple. We denote this set of representative examples to be

R = {r1, r2, . . . , rk}.
The group ID g(u) of any other example u, either a new

one or an one from the positive pools, is assigned to be

g(u) = argmax
i∈R

(s(u, ri)). (7)

This is a simple nearest neighbor clustering algorithm. It

shall be noted that the number of groups or the number of

representative examples is not necessarily the number of the

objects appeared in the target video. It is possible that an

object have multiple representative examples, correspond-

ing to different views and poses across the videos. This

implies that an object may correspond to multiple groups.

This is acceptable because we care more about the identity

clustering accuracy within each group. Certainly, some post

merging may be performed with appropriate human super-

vision and interaction.

4. Experiments

We use five video sequences from CAVIAR 1, i.e., One-

LeaveShop1front.mpg (ols1), OneLeaveShop2front.mpg

(ols2), OneShopOneWait1front.mpg (ols2), One-

LeaveShopReenter2font.mpg (olsr2), OneStopEn-

ter2front.mpg (ose2) for evaluation. We adopt the

evaluation criterion of PASCAL VOC challenge. A de-

tection is treated as a true positive if it has more than 0.5

overlap with the ground truth. We compute the detection

average precision (AP) to compare the performances. All

detection windows are normalized to 48 by 96.

Inside each detection window, we use 16 by 16 pixels

blocks and the shift stride is set to be 4 pixels both horizon-

tally and vertically. Hence, for each window, 189 blocks are

extracted. We strictly follow the procedure of [3] to build

the HOG feature, in which each block contains four block

normalized cells. A 59 dimension LBP histogram is also

extracted from each block. The horizontal and vertical dis-

tances between an anchor position and each image patch

are encoded in the patch feature representation as well. The

distance is multiplied by a coefficient of 0.01 for range nor-

malization. We use a branch factor k = 10 to train the

vocabulary tree.

1The data is from the EC Funded CAVIAR project/IST 2001 37540,

found at URL: http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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malization methods

4.1. Two human detectors

We use the deformable-model-based human detector [6]

and the HOG-LBP human detector [31] as the original

frame-based detectors. Both detectors are trained on the

INRIA pedestrian data-set. For most of the five videos, the

recalls of the deformable model detector [6] are smaller than

0.1 due to its disadvantage in detecting small objects. To cir-

cumvent this disadvantage and better evaluate the detector

adaptation performance, we upsampled all the video frames

by a factor of 2 before the detection. Both detectors are

applied with the proposed adaptation algorithm for a com-

prehensive evaluation.

4.2. The performance of detection by detections

There are several settings and parameters to be explored

in our detector adaptation algorithm, including the depth of

the vocabulary trees, the threshold t to select the positive

pools, and the various normalization schemes for the sim-

ilarity measure of the binary vectors. We first apply our

adaptation algorithm on the more efficient HOG-LBP de-

tector to explore different parameter settings. We then fix

the selected parameters to evaluate the adaptation perfor-

mance for both detectors.

4.2.1 The normalization scheme evaluation

We compare two normalization methods for the similarity

measure defined in Equation 2, including the adopted L1

norm, and the L2 norm. We present the AP measure in all

5 videos using these two normalization schemes along with

the AP score of the original HOG-LBP detector, as shown

in Figure 3. The two normalization methods have similar

performance over all five videos.

4.2.2 The evaluation on threshold for positive pool

Since the threshold t determines the positive example pool

E , we had expected that it would impact the performance of

Table 1: Performance comparison of different tree

depth(Average Precision %). “Org” shows the original de-

tection results obtained from the HOG-LBP detector

Tree Depth Ols1 Ols2 Osow1 Olsr2 Ose2 Avg

Org 57.45 48.67 48.36 59.17 66.49 56.03

2 65.60 51.36 51.03 72.58 70.9 62.29

3 67.02 54.51 58.50 75.54 74.30 65.97

4 66.72 54.96 58.79 76.07 74.93 66.29

5 66.88 55.04 58.73 76.15 75.18 66.40

6 66.64 54.96 58.83 75.62 75.16 66.24

Table 2: Adaptation based on deformable model [6]. Orig-

inal detection results VS adaptation results. (Average Pre-

cision %)

Method Ols1 Ols2 Osow1 Olsr2 Ose2

Original 0.537 0.429 0.467 0.559 0.759

Adaptation 0.553 0.461 0.501 0.591 0.790

the adapted detector. From our experiments, it turns out that

the proposed approach is not very sensitive to the thresh-

old t. We believe it benefited from the similarity averaging

operation in our transfer classifier. Due to the space limit,

we only present how the performance varies according to

the change of the threshold t for the video sequence “ols2”.

Figure 4f shows the result. We can see that the curve is very

flat from t = 0 to t = 1. The curves of the other four videos
are similar. The insensitivity of the threshold tmakes our al-

gorithm more generalizable which is very important in real

application.

4.2.3 The tree depth exploration

Another parameter to explore is the depth of the hierarchi-

cal k-means tree. Table 1 shows how the tree depth d affects

the performance of our transferred detector. It is easy to

observe that the detection results are similar when the tree

depth changes from 3 to 6, which contrasts the big leap in

accuracy when we change the depth from 2 to 3. Although

we can go further for the tree depth exploration, deep tree is

less preferable in real-world applications due to the memory

constrains and computing efficiency. Balancing the perfor-

mance and the efficiency, we set the depth of our vocabulary

tree as 5.

4.2.4 Performance of video object detection

Based on the above parameter exploration, we use L1 nor-

malization, set t = 0, and select 5 as the tree depth. From

Figure 4a to Figure 4e, we report performance of the pro-

posed non-parametric transfer learning approach for video
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Figure 4: Adaptation performance: Figure (a)-(e) show the adaptation performance based on the HOG-LBP detector; Figure

(f) shows how the performance varies against the clip threshold when composing the positive example pool.

objects detection on each of the 5 testing videos based on

the HOG-LBP detector. In all these 5 figures, “Original re-

sult” indicates the detection performance from the original

HOG-LBP detector; “After adaptation” corresponds to the

transfer learning with HOG feature.
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Figure 5: Adaptation using deformable model [6] on video

“olsr2”.

The ROC curves show that our approach achieves sig-

nificantly better results than the original detector. For the

HOG-LBP detector, we improve the AP by 10.37% over

all 5 videos. The steep drops of precision close to the maxi-

mum recall rate indicate that almost all of the positive exam-

ples have been re-scored with a high confidence. It should

be mentioned that we only use the HOG feature for adapta-

tion in order to make sure the big improvement comes from

the adapation framework, instead of augmented features.
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Figure 6: Adaptation using deformable model [6] on video

“ose2”.

Figure 5 and 6 present the adaptation performance based

on [6] (the results on the other three videos showed simi-

lar plots). The original detection result already had a sharp

drop in precision near the maximum recall as shown in the

figure, which means it is very hard to further improve the

performance. Even in this situation, our adaptation algo-

rithm is still able to push the envelope, as shown in Figure 5

and 6. Due to the page limit. We show the complete adap-

tation results in Table 2.

To understand the limitation of the proposed approach,

we show sample missing detections which remained to be

difficult for our transfer learning framework to detect in Fig-

ure 7. Almost all these missing detections are small and

blurry. They simply do not present sufficient visual details



Figure 7: Difficult to be detected objects in video “ose2”

to be detected, which are quite understandable.

4.3. Identity grouping

In this section, we perform the experiment on identity

grouping with the detection results from the HOG-LBP de-

tector. We compared our identity grouping method with K-

means grouping. For K-means grouping, we concatenate

features from each patch to form a long vector. The group-

ing performance is evaluated according to the portion of the

examples which has been correctly grouped. An example is

considered to be correctly clustered if its identity is the ma-

jority of the identities in the cluster. We adopt the following

evaluation criterion,

P =

∑k

i=1
F(mode(gi))

N
, (8)

where F(mode(gi)) counts the number of examples in

group i with identity mode(gi), which is the most fre-

quently appeared identities in group i; k is the number of

identities specified; N is the total number of positive exam-

ples evaluated. We set k = 20 for K-means clustering.

The grouping performances on both the positive pool and

all detections are presented in Table 3 and Table 4, we can

see that our grouping method is significantly better than K-

means clustering. Our grouping method improves the pre-

cision by more than 0.2 on both sets. Nevertheless, the

grouping performance on all detections is not as impres-

sive as we expected. This is because that there are many

very small objects detected, which are very difficult to be

identified. Some examples of such detections are shown in

Figure 8. Figure 9 shows sample grouping results obtained

by our grouping method and K-means grouping method.

In this experiment, we focused on the purity of the clus-

ter results. This consideration is due to the following fact:

for real applications where the users are interactively con-

firming the group annotation, it is much more convenient for

the users to have a clean cluster. The reason that our pro-

posed grouping algorithm is better than the K-means group-

ing over the raw features is that our binary codes largely

Figure 8: Small objects which are difficult to be identified.

Table 3: Identity grouping comparison on positive pool.

Ols1 Ols2 Osow1 Olsr2 Ose2 Avg

our method 0.825 0.980 0.870 0.948 0.854 0.895

k-means 0.584 0.897 0.515 0.658 0.474 0.625

Table 4: Identity grouping comparison on all detections.

Ols1 Ols2 Osow1 Olsr2 Ose2 Avg

our method 0.584 0.460 0.553 0.699 0.618 0.583

k-means 0.393 0.367 0.289 0.389 0.405 0.368

4 4 4 4 4 4 4 4 4

4 4 4 4 1 1 4 1 2

Figure 9: Sample grouping results: First row-examples

grouped into the same group by our approach; Second row-

examples grouped into the same group by k-menas cluster-

ing. The number below the image indicates the true ID.

suppressed the effects of noise.

5. Conclusion and future work

We proposed a simple and effective solution to im-

prove the pure detection accuracy of off-the-shelf detectors

trained from static images on target videos. The adapted

detections can serve as a higher precision initialization for

any other detection-by-tracking algorithms. Our nonpara-

metric transfer learning scheme, namely detection by detec-

tions, needs neither the original training data nor the label

information from the target video. Experiments on several

challenging videos with two state-of-the-art object detectors

show that our framework is insensitive to system parameters

and always improves the detection accuracy. The approach

is also able to group detections into identity groups. Future



work will explore the transfer learning of other types of de-

tectors and various applications which are enabled by the

proposed video object detection system.
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