
Generic Object Detection with Dense Neural Patterns and Regionlets

Will Zou WZOU@STANFORD.EDU

Stanford University

Xiaoyu Wang FANGHUAXUE@GMAIL .COM

NEC Laboratories America

Miao Sun MSQZ6@MAIL .MISSOURI.EDU

University of Missouri

Yuanqing Lin YLIN @NEC-LABS.COM

NEC Laboratories America

Abstract
This paper addresses the challenge of establlish-
ing a bridge between deep convolutional neu-
ral networks and conventional object detection
frameworks for accurate and efficient generic ob-
ject detection. We introduceDense Neural Pat-
terns, short for DNPs, which are dense local fea-
tures derived from discriminatively trained deep
convolutional neural networks. DNPs can be eas-
ily plugged into conventional detection frame-
works in the same way as other dense local fea-
tures(like HOG or LBP). The effectiveness of
the proposed approach is demonstrated withRe-
gionlets object detection framework. It achieved
46.1% mean average precision on the PASCAL
VOC 2007 dataset, and 44.1% on the PASCAL
VOC 2010 dataset, which dramatically improves
the originalRegionlets approach without DNPs.

1. Introduction

Detecting generic objects in high-resolution images is one
of the most valuable pattern recognition tasks, useful for
large-scale image labeling, scene understanding, action
recognition, self-driving vehicles and robotics. At the
same time, accurate detection is a highly challenging task
due to cluttered backgrounds, occlusions, and perspective
changes. Predominant approaches (Felzenszwalb et al.,
2010) use deformable template matching with hand-
designed features. However, these methods are not flexi-
ble when dealing with variable aspect ratios. Wanget al.
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recently proposed a radically different approach, named
Regionlets, for generic object detection (Wang et al.,
2013). It extends classic cascaded boosting classifiers
(Viola & Jones, 2001) with a two-layer feature extrac-
tion hierarchy which is dedicatedly designed for re-
gion based object detection. The innovative framework
is capable of dealing with variable aspect ratios, flex-
ible feature sets, and improves upon Deformable Part-
based Model by 8% (Wang et al., 2013). Despite the
success of these sophisticated detection methods, the
features employed in these frameworks are still tradi-
tional features based on low-level cues such as histogram
of oriented gradients(HOG) (Dalal & Triggs, 2005), lo-
cal binary patterns(LBP) (Ahonen et al., 2006) or covari-
ance (Tuzel et al., 2008) built on image gradients.

As with the success in large scale image classifica-
tion (Krizhevsky et al., 2012), object detection using a deep
convolutional neural network also shows promising perfor-
mance (Girshick et al., 2013; Sermanet et al., 2013). The
dramatic improvements from the application of deep neu-
ral networks are believed to be attributable to their capa-
bility to learn hierarchically more complex features from
large data-sets. Despite their excellent performance, the
application of deep CNNs has been centered around image
classification, which is computationally expensive when
transfering to object detection. For example, the approach
in (Girshick et al., 2013) needs around 2 minutes to evalu-
ate one image. Furthermore, their formulation of the prob-
lem does not take advantage of venerable and successful
object detection frameworks such as DPM orRegionlets
which are powerful designs for modeling object deforma-
tion, sub-categories and multiple aspect ratios.

These observations motivate us to propose an approach to
efficently incorporate a deep neural network into conven-



Generic Object Detection with Dense Neural Patterns and Regionlets

Object detection 

model(regionlets) 

 

Object detection 

model(regionlets) 

HOG DNP 

Figure 1.Deep Neural Patterns (DNP) for object detection

tional object detection framework. To that end, we intro-
duceDense Neural Pattern (DNP), a local feature densely
extracted from an image with arbitrary resolution using
a well trained deep convolutional neural networks. The
DNPs not only encode high-level features learned from a
large image data-set, but are also local and flexible like
other dense local features (like HOG or LBP). It is easy
to integrate DNPs into the conventional detection frame-
works. As shown in Figure3 and Figure4, we illustrate the
DNPs extraction process using the fifth convolutional layer
of the network we trained. The fifth convolutional layer
consists of 256 feature maps, each of which has 13×13
convolutional output. Each output corresponds to a lo-
cal receptive field (Hubel & Wiesel, 1968) in the input im-
age. The center of the receptive field can be back-tracked
through the convolutional and pooling layers. It is shown
that, when mapping all the fifth layer convolution output
back to the input image, we obtain 169 (13×13) feature
vectors (DNPs) for 169 locations with stride of 16 pixels1.
Dense features for the whole image is easily obtained by
shifting the convolution window of the neural network, or
“network convolution”2. As the result, a typical PASCAL
VOC image only needs to run the neural network several
times to produce DNPs for the whole image depending on
the required feature stride, promising low computational
cost for feature extraction. To adapt our features for the
Regionlets framework, we build normalized histograms of
DNPs inside each sub-region of arbitrary resolution within
the detection window and add these histograms to the fea-
ture pool for the boosting learning process. DNPs can also

1The usable feature points are less due to padding effects
which is explained in Sec.3.2.

2To obtain DNPs with smaller strides, for example 8 pixels,
we can shift the image by 8 pixels to extract a new set of DNPs
and added them to the original set.

be easily combined with traditional features in theRegion-
lets framework as explained in Sec.3.3.

Our experiments show that the proposed DNPs are very ef-
fective and also complementary to traditional features. On
PASCAL 2007 VOC detection benchmark, our framework
with Regionlets and DNPs achieved 46.1% mAP compared
to 41.7% with the originalRegionlets; on PASCAL VOC
2010, it achieves 44.1% mAP compared to 39.7% with
the originalRegionlets. It outperforms the recent approach
by (Girshick et al., 2013) with 43.5% mAP. Furthermore,
our DNP features are extracted from the fifth convolutional
layer of the deep CNN without fine-tuning on the target
data-set, while (Girshick et al., 2013) used the seventh full
connected layer with fine-tuning. Importantly, for each
PASCAL image, our feature extraction finishes in 2 sec-
onds, compared to approximately 2 minutes from our repli-
cation of (Girshick et al., 2013).

The major contribution of the paper is two-fold: 1) We
propose a method to incorporate a discriminatively-trained
deep neural network into a generic object detection frame-
work. This approach is very effective and efficient. 2) We
apply the proposed method to theRegionlets object detec-
tion framework and achieved competitive and state-of-the-
art performance on the PASCAL VOC datasets.

2. Review of Related Work

Generic object detection has been improved over years,
due to better deformation modeling, more effective multi-
viewpoints handling, occlusion handling. Complete sur-
vey of the object detection literature is certainly be-
yond the scope of this paper. Representative works in-
clude but not limited to Histogram of Oriented Gradi-
ents (Dalal & Triggs, 2005), Deformable Part-based Model
and its extensions (Felzenszwalb et al., 2010), Region-
lets (Wang et al., 2013), etc. This paper aims at incorporat-
ing discriminative power of a learned deep CNN into these
successful object detection frameworks. The execution of
the idea is based onRegionlets object detection framework
which is currently the state-of-the-art detection approach
without using a deep neural network. More details about
Regionlets are introduced in3.3.

More discriminative and robust features are always de-
sirable in object detection, which are arguably one of
the most important domain knowledge developed in com-
puter vision community in past years. Most of these
features are based on colors (Shahbaz Khan et al., 2012),
gradients (Dalal & Triggs, 2005), textures (Ahonen et al.,
2006; Wang et al., 2009) or relative high order information
such as covariance (Tuzel et al., 2008). These features are
generic and have been demonstrated to be very effective
in object detection. However, none of them encodes high-
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level or even semantic information. The DNPs proposed
in this paper complement existing features in this aspect.
Their combination produces much better performance than
applying either one individually.

Recently, deep learning with CNN has achieved appealing
results on image classification (Krizhevsky et al., 2012).
This impressive result is built on prior work on feature
learning (LeCun et al., 1998; Hinton et al., 2012). The
availability of large datasets like ImageNet (Deng et al.,
2010) and high computational power with GPUs has em-
powered CNNs to learn deep discriminative features. A
parallel work of deep learning (Le et al., 2012) without us-
ing convolution also produced very strong results on the
ImageNet classification task. In our approach, we choose
the deep CNN architecture due to its unique advantages re-
lated to an object detection task as discussed in Sec.3.1.
The most related work to ours is (Girshick et al., 2013)
which converts the problem of object detection into region-
based image classification using a deep convolutional neu-
ral network. Our approach differs in two aspects: 1)
We provide a framework to leverage both the discrimi-
native power of a deep CNN and recently developed ef-
fective detection models. 2) Our method is 74x faster
than (Girshick et al., 2013). There have been earlier work
in applying deep learning to object detection (LeCun et al.,
2004; Le et al., 2011). Among these, most related to ours
is the application of unsupervised multi-stage feature learn-
ing for object detection (Sermanet et al., 2012). In contrast
to their focus on unsupervised pre-training, our work takes
advantage of a large-scale supervised image classification
model to improve object detection frameworks. The deep
CNN is trained using image labels on an image classifica-
tion task. Learning deep CNN in an unsupervised manner
for our framework may also be interesting but not the cur-
rent focus of the paper.

The proposed approach is a new example of transfer learn-
ing, i.e. transferring the knowledge learned from large-
scale image classification (in this case, ImageNet image
classification) to generic object detection. There have
been some very interesting approaches in transferring the
learned knowledge by deep neural networks. For exam-
ple, (Raina et al., 2007) and (Pan & Yang, 2010) illustrated
transfer learning with unlabeled data or labels from other
tasks. Our work shares a similar spirit but in a different
context. It transfers the knowledge learned from a classifi-
cation task to object detection by trickling high-level infor-
mation in top convolutional layers in a deep CNN down to
low-level image patches.

3. Dense Neural Patterns for Object Detection

In this section, we first introduce the neural network used
to extract dense neural patterns, Then we provide detailed

description of our dense feature extraction approach. Fi-
nally, we illustrate the techniques to integrate DNP with
theRegionlets object detection framework.

3.1. The Deep Convolutional Neural Network for
Dense Neural Patterns

Deep neural networks offer a class of hierarchical
models to learn features directly from image pixels.
Among these models, deep convolutional neural net-
works (CNN) are constructed assuming locality of spa-
tial dependencies and stationarity of statistics in natural
images (LeCun & Bengio, 1995; Krizhevsky et al., 2012;
Ranzato & LeCun, 2007). The architecture of CNNs gives
rise to several unique properties desirable for object detec-
tion. Firstly, each neuron in a deep CNN corresponds to
a receptive field (Hubel & Wiesel, 1968) whose projected
location in the image can be uniquely identified. Thus, the
deeper convolutional layers implicitly capture spatial infor-
mation, which is essential for modeling object part config-
urations. Secondly, the feature extraction in a deep CNN
is performed in a homogeneous way for receptive fields at
different locations due to convolutional weight-tying. More
specifically, different receptive fields with the same visual
appearance produce the same activations. This is simi-
lar to a HOG feature extractor, which produces the same
histograms for image patches with the same appearance.
Other architectures such as local receptive field networks
with untied weights (Le et al., 2012) or fully-connected
networks3 do not have these properties. Not only are
these properties valid for a one-layer CNN, they are also
valid for a deep CNN with many stacked layers and all
dimensions of its feature maps4. By virtue of these de-
sirable properties, we employ the deep CNN architecture.
We build a CNN with five convolutional layers interweaved
with max-pooling and contrast normalization layers as il-
lustrated in Figure 2. In contrast with (Krizhevsky et al.,
2012), we did not separate the network into two columns,
and our network has slightly larger number of parameters.
The deep CNN is trained on large-scale image classifica-
tion with data from ILSVRC 2010. To train the neural net-
work, we adopt stochastic gradient descent with momen-
tum (LeCun et al., 1998) as the optimization technique,
combined with early stopping (Girosi et al., 1995). To reg-
ularize the model, we found it useful to apply data aug-
mentation and the dropout technique (Hinton et al., 2012;
Krizhevsky et al., 2012). Although the neural network we
trained has full connected layers, we extract DNPs only
from convolutional layers since they preserve spatial infor-

3Neural networks in which every neurons in the next layer are
connected with every neuron on the previous layer

4To see this in an intuitive sense, one could apply a “network-
convolution”, and abstract the stack of locally connected layers as
one layer
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mation from the input image.
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Figure 2.Architecture of the deep convolutional neural network
for extracting dense neural patterns.

3.2. Dense Neural Patterns

After the deep CNN is sufficiently trained on large-scale
image classification, this recognition module is employed
to produce dense feature maps on high-resolution detection
images. We call the combination of this technique and the
resulting feature set Dense Neural Patterns (DNPs).

The main idea for extracting dense neural pattern is illus-
trated in Figure3 and Figure4. In the following para-
graphs, we first describe the methodologies to extract fea-
tures using a deep CNN on a single image patch. Then,
we describe the geometries involved in applying “network-
convolution” to generate dense neural patterns for the entire
high-resolution image.

Each sub-slice of a deep CNN for visual recogni-
tion is commonly composed of a convolutional weight
layer, a possible pooling layer, and a possible contrast-
normalization layer (Jarrett et al., 2009). All three layers
could be implemented by convolutional operations. There-
fore, seen from the perspective of preserving the spatial fea-
ture locations, the combination of these layers could be per-
ceived as one convolutional layer with one abstracted ker-
nel. The spatial location of the output can be traced back
by the center point of the convolution kernel.

As shown in Figure3(b), each convolution kernel produces
a sheet of neural patterns. To tailor dense neural patterns
into a flexible feature set for object detectors, we compute
the 2-D location of each neural pattern and map it back to
coordinates on the original image. As an example, we show
how to compute the location of the top-left neural pattern
in Figure 3(b). The horizontal locationx of this top-left
neural pattern feature is computed with Equation1:

xi = xi−1 + (
Wi − 1

2
− Pi)Si−1 (1)

wherei > 1, x1 = W1−1

2
, xi−1 is the top-left location

of the previous layer,Wi is the window size of a convo-
lutional or pooling layer,Pi is the padding of the current
layer,Si−1 is the actual pixel stride of two adjacent neural
patterns output by the previous layer which can be com-
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Figure 3.Neural patterns extraction with location association. (a)
A square region (224× 224) as the input for the deep neural net-
work. (b) Feature maps generated by filters in the fifth convo-
lution layer, spatially organized according to their inherited 2-D
locations. Each map has13× 13 neural patterns. (c) Feature vec-
tor generated for each feature point. A bigger circle indicates a
larger neural activation.

puted with Equation2

Si = Si−1 × si. (2)

Heresi is the current stride using neural patterns output by
previous layers as “pixels”. Given equation1 and equa-
tion 2, the pixel locations of neural patterns in different
layers can be computed recursively going up the hierarchy.
Table 1 shows a range of geometric parameters, including
original pixel x coordinates of the top-left neural pattern
and the pixel stride at each layer. Since convolutions are
homogeneous inx andy directions, they coordinates can
be computed in a similar manner. Coordinates of the re-
maining neural patterns can be easily computed by adding
a multiple of the stride to the coordinates of the top-left fea-
ture point. To obtain a feature vector for a specific spatial
location (x, y), we concatenate neural patterns located at
(x, y) from all maps(neurons) as illustrated in Figure3(c).

Table 1.Compute the actual locationxi of the top-left neural pat-
tern and the actual pixel distanceSi between two adjacent neural
patterns output by layeri, based on our deep CNN structure.

i Layer Wi si Pi Si xi

1 conv1 11 4 1 4 6
2 pool1 3 2 0 8 10
3 conv2 5 1 2 8 10
4 pool2 3 2 0 16 18
5 conv3 3 1 1 16 18
6 conv4 3 1 1 16 18
7 conv5 3 1 1 16 18
8 pool3 3 2 0 32 34

Now that a feature vectors can be computed and local-
ized, dense neural patterns can be obtained by “network-
convolution”. This process is shown in Figure4. Produc-
ing dense neural patterns to a high-resolution image could
be trivial by shifting the deep CNN model with 224×224
input over the larger image. However, deeper convolutional
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networks are usually geometrically constrained. For in-
stance, they require extra padding to ensure the map sizes
and borders work with strides and pooling of the next layer.
Therefore, the activation of a neuron on the fifth convo-
lutional layer may have been calculated on zero padded
values. This creates the inhomogeneous problem among
neural patterns, implying that the same image patch may
produce different activations. Although this might cause
tolerable inaccuracies for image classification, the problem
could be detrimental to object detectors, which is evaluated
by localization accuracy. To rectify this concern, we only
retain central5×5 feature points of the feature map square.
In this manner, each model convolution generates 25 fea-
ture vectors with a16×16 pixel stride. In order to produce
the dense neural patterns map for the whole image using
the fifth convolutional layer, we convolve the deep CNN
model every 80 pixels in bothx andy direction. Given a
640 × 480 image, it outputs40 × 30 feature points which
involves8× 6 model convolutions.

The DNP feature representation has some desirable char-
acteristics which make it substantially different from and
complementary to traditional features used in object detec-
tion.

(a) Convolution with a stride 

of   × 16 pixels 

(b) Output the dense neural 

patterns 

Figure 4.Dense feature maps obtained by shifting the classifica-
tion window and extract neural patterns at center positions.

Robustness to boundary effects caused by local shifts
Most hand-crafted features, are not robust to local shifts
due to the hard voting process. Given HOG for example,
gradient orientations are hard voted to spatial(8 × 8) his-
tograms. Features close to the boundary of two feature re-
gions may be in one region on one example, but the other
on another example which causes substantial feature rep-
resentation change. The boundary effects may cause dif-
ficulties in robustness detection. Moreover, if we shift the
window by8 pixels, extracted features are completely mis-
aligned. On the contrary, the max-pooling in DNPs explic-
itly handles reasonable pixel shifts. The dense convolution
with shared weights, the data driven learned invariance also
implicitly further improve the robustness to boundary ef-
fects and local shifts.

Local features with high-level information Another sig-
nificant advantage of DNPs is that the hierarchical archi-

Feature point 

Neural pattern extraction region 

HOG extraction region 

Figure 5.Long-range features for detection from higher layers of
convolutional networks: The blue circle shows the feature point
at which we want to extract features. The yellow patch shows the
area where HOG features are built (usually8 × 8). The green
patch is the receptive field from which the deep net features are
are extracted (163× 163 for the fifth convolutional layer).

tecture of CNNs offers high-level visual features. More
specifically, the features are indicative of object-level or
object-part level visual input. To validate this, we find the
image patches that causes large responses to a selected neu-
ral pattern dimension in the deep layers of the CNN. This
visualization is shown in Figure8. It suggests that patches
which have large feature responses to the same neural pat-
tern dimension correspond to similar object category, color
or contour. In this respect, DNPs offers significant advan-
tages over traditional features for object detection. Details
about the visualization can be found in Sec.4.2.

Long-range context modeling From lower to higher lay-
ers, DNP features cover increasingly larger receptive fields.
On the fifth layer, each neuron is responsive to a spatial area
of 163× 163 pixels in the input image. The features in this
layer reacts to appearances of much larger scale as com-
pared to hand-designed local features like HOG for object
detection as shown in Figure5. The long-range effect of
the significantly larger context area is beneficial. It is anal-
ogous to long-range effects which were shown to improve
localization (Criminisi et al., 2009) and image segmenta-
tion (Lezama et al., 2011).

3.3. Regionlets with Local Histograms of Dense Neural
Patterns

TheRegionlets approach for object detection was recently
proposed in (Wang et al., 2013). Compared to classical
detection methodologies, which apply a object clas-
sifier on dense sliding windows (Felzenszwalb et al.,
2010; Dalal & Triggs, 2005), the approach em-
ploys candidate bounding boxes from Selective
Search (Van de Sande et al., 2011). Given an image,
candidate boxes,i.e., object hypothesis are proposed using
low-level segmentation cues.

The Regionlets approach employs boosting classifier cas-
cades as the window classifier. The input to each weak clas-
sifier is a one-dimensional feature from an arbitrary region
R. The flexibility of this framework emerges from max-
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Figure 6.Regionlets object detection framework. It learns cascaded boosting classifiers todetect objects of interest. The object searching
space is defined using segmentation cues.

pooling features from several sub-regions inside the region
R. These sub-regions are namedRegionlets. In the learn-
ing process, the most discriminative features are selected
by boosting from a large feature pool. It naturally learns
deformation handling, one of the challenges in generic ob-
ject detection. TheRegionlets approach offers the powerful
flexibility to handle different aspect ratios of objects. The
algorithm is able to evaluate any rectangular bounding box.
This is because it removes constraints that come with fixed
grid-based feature extraction.

The dense neural patterns introduced in3.2 encode high-
level features from a deep CNN at specific coordinates on
the detection image. This makes them a perfect set of
features for theRegionlets framework. The basic feature
construction unit in theRegionlets detection model,i.e. a
regionlet, varies in scales and aspect ratios. At the same
time, the deep neural patterns from an image are extracted
using a fixed stride which leads to evenly distributed fea-
ture points in both horizontal and vertical directions. As
illustrated in Figure7, a regionlet can cover multiple fea-
ture points or no feature point. To obtain a fixed length vi-

Region 

Detection 

Window 

Regionlet 

Figure 7.Illustration of feature points, a detection window, re-
gions, and regionlets. Blue points represent dense neural patterns
extracted in each spatial location. The figure shows that a region-
let can spread across multiple feature points, or no feature point.

sual representation for a regionlet of arbitrary resolution,
we build a local DNP histogram, or average pooling of
DNPs, inside each regionlet. Denote DNPs in a region-
let r as{xi|i ∈ (1, . . . Nr)}, wherei indicates the index of

the feature point,Nr is the total number of feature points
in regionletr. The final feature forr is computed as:

x =
1

Nr

Nr∑

i=1

xi. (3)

Each dimension of the deep neural patterns corresponds to
a histogram bin and their values from different spatial lo-
cations are accumulated inside a regionlet. The histograms
are normalized using L-0 norm. While most histogram fea-
tures define a fixed spatial resolution for feature extraction,
our definition allows for a histogram over a region of arbi-
trary shape and size. Following (Wang et al., 2013), max-
pooling is performed among regionlets to handle local de-
formations.

To incorporate DNP into theRegionlets detector learning
framework, in which the weak learner is based on a 1-D
feature, we uniformly sample theDNP×Regionlets config-
uration space to construct the weak classifier pool. Each
configuration specifies the spatial configuration ofRegion-
lets as well as the feature dimension ofDNP. Because the
representation is 1-D, the generated feature pool can be eas-
ily augmented to the pool of other features such as HOG,
LBP or Covariance.

Constructing DNP feature representations for other
template-based detectors (similar as HOG template) is
fairly simple. Naturally we just need to concatenate all
DNPs in the detection window. The features can also be
directly applied to the Deformable Part-based Model by re-
placing the HOG features with the 256 dimensional neural
patterns.

4. Experiments

To validate our method, we conduct experiments on
the PASCAL VOC 2007 and VOC 2010 object detec-
tion benchmarks, following standard evaluation protocols.
PASCAL VOC datasets contain 20 categories of objects.
The performance on these datasets is measured by mean
average precision (mAP) over all classes. In the follow-
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Table 2.Detection results on PASCAL VOC 2007 using different layers of neuralpatterns as the feature for theRegionlets framework.

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tvmAP
Layer 1 31.5 28.9 8.1 12.7 1.2 32.9 46.3 29.6 4.2 18.3 28.2 17.246.3 40.6 36.1 8.2 21.6 17.5 41.7 25.8 24.9
Layer 2 40.1 46.2 16.6 15.6 5.3 44.3 48.7 42.8 9.9 31.6 36.2 27.8 58.1 48.4 39.8 9.1 29.6 28.7 53.6 37.2 33.5
Layer 3 39.1 45.2 18.3 16.3 4.7 46.9 47.1 45.3 9.3 31.6 42.2 31.4 57.0 50.5 41.4 12.8 26.6 28.8 54.6 40.7 34.5
Layer 4 45.0 53.8 21.2 17.5 8.1 51.3 50.3 52.7 12.6 32.5 44.3 39.3 62.454.8 42.3 14.1 33.5 40.8 60.3 40.9 38.9
Layer 5 44.655.6 24.7 23.5 6.3 49.4 51.0 57.5 14.3 35.9 45.9 41.3 61.9 54.7 44.1 16.0 28.6 41.7 63.2 44.2 40.2

ing paragraphs, we describe the experimental set-up, re-
sults and analysis for our object detection approach.

We train deep neural network with five convolutional lay-
ers and three fully connected layers on 1.2 million images
in ILSVRC 2010. All input images are center-cropped
and resized to256 × 256 pixels. The CNN was trained
on a NVIDIA Tesla K20c GPU. To improve invariance in
our DNP features, we augment the data with image dis-
tortions based on translations and PCA on color channels.
After training for 90 epochs, the deep CNN reached 59%
top 1 accuracy, within a few percent of the performance
in (Krizhevsky et al., 2012) on the ILSVRC 2010 test set.
While our aim is to demonstrate the effectiveness of DNPs
in object detection, a deep CNN with better performance is
likely to further improve the detection accuracy.

The originalRegionlets (Wang et al., 2013) approach uti-
lizes three different features, HOG, LBP and covariance. In
our experiments, we add to the feature pool DNP features
from different layers. During cascade training, 100 mil-
lions candidate weak classifiers are generated from which
we sample 20K weak classifiers. On each test image, we
form proposed object hypothesis as (Van de Sande et al.,
2011) and pass them along the cascaded classifiers to ob-
tain final detection result.

4.1. Detection Performance

We firstly evaluate how the deep neural patterns alone per-
form with theRegionlets framework, followed with evalu-
ation of the combination of DNP and HOG, LBP, Covari-
ance features. Finally, we compare our method with other
state-of-the-art approaches.

Table 2 presents the detection performance using dense
neural patterns extracted from different layers of the deep
convolutional neural network on PASCAL VOC 2007
dataset. It shows that the performance increases with re-
spect to the layer hierarchy. DNPs from the fourth layer
and the fifth layer have similar performance, both of which
are much better then those from lower layers.

Table 3 summarizes the performance(sorted in ascending
order) of traditional features, DNP and their combinations
on PASCAL VOC 2007. It is interesting that DNPs from
the second layer and third layer have comparable perfor-
mance with the well engineered features such as HOG,

Table 3.Detection results using traditional feature and Deep Neu-
ral Patterns on PASCAL VOC 2007. The combination of tradi-
tional features and DNP shows significant improvement.

Features Mean AP
DNP Layer 1 24.9
DNP Layer 2 33.5
LBP 33.5
Covariance 33.7
DNP Layer 3 34.5
HOG 35.1
DNP Layer 4 38.9
DNP Layer 5 40.2
HOG, LBP, Covariance 41.7
HOG, LBP, Covariance, DNP Layer 5 46.1

Table 4.Performance comparison between two feature combina-
tion strategies: 1) Combination of neural patterns from the fifth
layer and neural patterns from a shallow layer(second layer). 2)
Combination of neural patterns from the fifth layer and hand-
crafted low-level features.

Features Mean AP
DNP Layer 5 40.2%
DNP Layer 5 + Layer 2 40.4%
DNP Layer 5 + HOG, LBP, Covariance 46.1%

LBP and Covariance features. DNPs from the fifth layer
outperforms any single features, and are comparable to the
combination of all the other three features. The most excit-
ing fact is that DNPs and hand-designed features are highly
complementary. Their combination boosts the mean aver-
age precision to 46.1%, outperforming the original Regi-
nolets approach by 4.4%. Note that we did not apply any
fine-tuning of the neural network on the PASCAL dataset.

The combination of DNPs and hand-crafted low-level fea-
tures significantly improves the detection performance.
As aforementioned, low-level DNPs perform similarly as
HOG. To determine whether the same synergy can be ob-
tained by combining low-level and high-level DNPs, we
combine the DNPs from the fifth convolutional layer and
the second convolutional layer. The performance is shown
in Table 4. However, the combination only performs
slightly better (0.2%) than using the fifth layer only. This
may be because the fifth layer features are learned from the
lower level which makes these two layer features less com-
plementary.
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Table 5.Detection results(mean average precision%) on PAS-
CAL VOC 2007 and VOC 2010 datasets.DPM: Deformable
Part-based Model (Felzenszwalb et al., 2010);SS SPM: Selec-
tive Search with Spatial Pyramid Matching (Van de Sande et al.,
2011);Objectness: (Alexe et al., 2012); BOW: (Vedaldi et al.,
2009); Regionlets:Regionlets method with HOG, LBP Covari-
ance feature (Wang et al., 2013), DNP+ Regionlets:Regionlets
method with HOG, LBP Covariance feature and DNPs.R-CNN
pool5: Region based classification for detection (Girshick et al.,
2013) with features from the fifth convolutional layer with max
pooling. R-CNN FT fc7: Region based classification for detec-
tion (Girshick et al., 2013) with features from the full connected
layer fine-tuned on the PASCAL VOC datasets.

VOC 2007 VOC2010
DPM 33.7 29.6
SSSPM 33.8 34.1
Objectness 27.4 N/A
BOW 32.1 N/A
Regionlets 41.7 39.7
R-CNN pool5 40.1 N/A
R-CNN FT fc7 48.0 43.5
DNP+Regionlets 46.1 44.1

Table 5 shows detection performance comparison with
other detection methods on PASCAL VOC 2007 and VOC
2010 datasets. We achieved 46.1% and 44.1% mean av-
erage precision on these two datasets which are com-
parable with or better than the current stat of the art
by (Girshick et al., 2013). Here we compare to results
with two different settings in (Girshick et al., 2013): fea-
tures from the fifth convolutional layer after pooling, fea-
tures from the seventh full connected layer with fine-tuning
on the PASCAL datasets. The first setting is similar to
us except that features are pooled. Our results are bet-
ter(46.1% vs 40.1% on VOC 2007) than (Girshick et al.,
2013) on both datasets in this setting. The approach
in (Girshick et al., 2013) requires resizing a candidate re-
gion and apply the deep CNN thousands of times to ex-
tract features from all candidate regions in an image. The
complexity of our method is independent of the number
of candidate regions which makes it orders of magnitude
faster. Table6 shows the comparison with (Girshick et al.,
2013) in terms of speed using the first setting.5 The
experiment is performed by calculating the average time
across processing all images in the PASCAL VOC 2007
dataset. DNPs extraction take 1.64 seconds for per im-
age while (Girshick et al., 2013) requires 2 minutes. The
numbers are obtained on an Intel Xeon CPU E5-2450 blade
server.

5The time cost of the second setting in (Girshick et al., 2013)
is higher because of the computation in full connected layer.

Table 6.Speed comparison with directly extracting CNN features
for object candidates (Girshick et al., 2013) .

R-CNN pool5 Ours
Resize object candidate regions Yes No
Number of model convolutions ∼ 2213 ∼ 30

Feature extraction time per image 121.49s 1.64s

4.2. Visual Analysis

Is the increase in detection performance by adding dense
neural patterns attributable to the high-level cues encoded
by DNPs? To answer this question, we devise a visual-
ization techniques for the most important features used by
the detector. The learning process for boosting selects dis-
criminative weak classifiers. The importance of a feature
dimension roughly corresponds to how frequently it is se-
lected during training. We count the occurrence of each
dimension in the final weak classifier set and find the DNP
feature dimension most frequently selected by boosting. To
visualize these feature dimensions, we retrieve image crops
from the dataset which give the highest responses to the
corresponding neurons in the deep CNN.

Figure 8 shows the visualization. The ideal case is that the
most frequent neural patterns selected in a person detector
give high responses to parts belonging to a person. This in-
dicates that the neural patterns encode high-level informa-
tion. The left column of Figure8 describes the object cate-
gory we want to detect. Right columns show visual patches
which give high responses to the most frequently selected
neural pattern dimension for the category. This analysis in-
dicates that the selected neural patterns encode part-level or
object-level visual features highly correlated with the ob-
ject category. For a dog detector, neural patterns related to
a dog face are frequently selected. We also performed a
similar analysis with the HOG feature. In comparison, the
frequently selected HOG dimension carries a lot less cate-
gorical information because gradients are low-level visual
features.

5. Conclusion

In this paper, we present a novel framework to incorporate a
discriminatively trained deep convolutional neural network
into generic object detection. It is a fast effective way to en-
hance existing conventional detection approaches with the
power of a deep CNN. Instantiated withRegionlets detec-
tion framework, we demonstrated the effectiveness of the
proposed approach on public benchmarks. We achieved
comparable performance to state-of-the-art with 74 times
faster speed on PASCAL VOC datasets. We also show that
the DNPs are complementary to traditional features used
in object detection. Their combination significantly boosts
the performance of each individual feature.
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Figure 8.Visualization of the high-level information encoded by
neural patterns from the fifth convolutional layer. The patches
are obtained by: 1) Determine the most frequently selected neural
pattern dimension (1 out of 256) for an object category. 2) Run
the neural pattern extractor as a detector, using the value of the
extracted neural patterns as detection scores. 3) Collect and rank
detection results, visual patches with larger neural pattern values
are ranked top.
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LeCun, Yann, Bottou, Ĺeon, Orr, Genevieve B, and M̈uller,
Klaus-Robert. Efficient backprop. InNeural networks:
Tricks of the trade, pp. 9–50. Springer, 1998.

LeCun, Yann, Huang, Fu Jie, and Bottou, Leon. Learning
methods for generic object recognition with invariance
to pose and lighting. InCVPR, 2004.
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Michaël, Fergus, Rob, and LeCun, Yann. Overfeat: Inte-
grated recognition, localization and detection using con-
volutional networks.CoRR, abs/1312.6229, 2013.

Shahbaz Khan, F., Anwer, R.M., van de Weijer, J., Bag-
danov, A.D., Vanrell, M., and Lopez, A.M. Color at-
tributes for object detection. InCVPR, 2012.

Tuzel, Oncel, Porikli, Fatih, and Meer, Peter. Pedestrian
detection via classification on riemannian manifolds.T-
PAMI, 2008.

Van de Sande, Koen EA, Uijlings, Jasper RR, Gevers,
Theo, and Smeulders, Arnold WM. Segmentation as se-
lective search for object recognition. InICCV, 2011.

Vedaldi, Andrea, Gulshan, Varun, Varma, Manik, and Zis-
serman, Andrew. Multiple kernels for object detection.
In ICCV, 2009.

Viola, P. and Jones, M. J. Robust real-time object detection.
IJCV, 2001.

Wang, Xiaoyu, Han, Tony X, and Yan, Shuicheng. An hog-
lbp human detector with partial occlusion handling. In
ICCV, 2009.

Wang, Xiaoyu, Yang, Ming, Zhu, Shenghuo, and Lin,
Yuanqing. Regionlets for generic object detection. In
ICCV, 2013.


