

Regionlets for Generic Object Detection

Xiaoyu Wang[†], Ming Yang[‡], Shenghuo Zhu[†] and Yuanqing Lin[†]

[†]NEC Labs America, Inc. Cupertino, CA 95014, USA

[‡]Facebook, Inc. Menlo Park, CA 94025, USA

Generic object detection

NEC Laboratories America Relentless passion for innovation

Train

Sheep

Potted plant

Performance evolution on the PASCAL VOC 2007 object detection dataset(mean AP)

$2008^1 \quad 2009^2 \quad 2010^3 \quad 2011^4 \quad 2011^5 \quad 2013^6 \quad 2013^7$

1. P. Felzenszwalb, et. al. A Discriminatively Trained, Multiscale, Deformable Part Model, CVPR 2008

- 2. A. Vedaldi, et. al. Multiple Kernels for Object Detection. ICCV 2009
- 3. L. Zhu, et. al. Latent hierarchical structural learning for object detection. CVPR 2010.
- 4. K. E. A. Van de Sande, et. al. Segmentation as selective search for object recognition. ICCV 2011
- 5. Z. Song, et. al. Contextualizing object detection and classification. CVPR, 2011
- 7. G. Chen, et. al. Detection Evolution with Multi-Order Contextual Co-occurrence, CVPR 2013 6. http://www.cs.berkeley.edu/~rbg/latent/ (DPM Release 5)

The two representative object detection frameworks

41.7%

- (1) Scanning window with Deformable Partbased Model (DPM)
- (2) Selective Search with Spatial Pyramid Matching (SS_SPM)
- (3) Regionlets (No deep CNN feature yet 😬

Object Detection

Review: Feature extraction

□ Feature design

- HOG
- SIFT, and many others...
- Feature extraction
 - Densely extracted over N x N pixel cells

Review: Deformation handling

- Deformable Part-based Model (DPM)
 - Specify the number of deformable parts
- Spatial Pyramid Matching
 - Specify the number of pyramids to build

Do we have to pre-define model parameters to handle different degrees of deformation?

Review: Multi scales/viewpoints

DPM

- Resize an image to detect objects at a fixed scale
- Multiple models, each deals with one viewpoint
- Spatial Pyramid Matching
 - No need to resize the image
 - One model, a codebook is used to encode features
- Can we learn a model that can be easily adapted to arbitrary scales and viewpoints?

Relentless pase

Motivation

- Motivation: A flexible and general object-level representation with
 - Hassle free deformation handling
 - Arbitrary scales and aspect ratio handling

Detection framework

Generate candidate detection bounding boxes^{1,2}

1. K. E. A. Van de Sande, et. al. Segmentation as selective search for object recognition. ICCV 2011

2. B. Alexe , et. al. Measuring the objectness of image windows. PAMI 2012

Regionlet: Definition

- **Region**(R): Feature extraction region
- □ Regionlet(r_1 , r_2 , r_3): A sub-region in a feature extraction area whose position/resolution are relative and normalized to a detection window

Regionlet: Definition(cont.)

□ Relative normalized position

Regionlet: Feature extraction

Could be SIFT, HOG, LBP, Covariance features, whatever feature your like!

Regionlets: Training

- Constructing the regions/regionlets pool
 - Small region, fewer regionlets -> fine spatial layout
 - Large region, more regionlets -> robust to deformation
- □ Learning realBoost¹ cascades
 - 16K region/regionlets candidates for each cascade
 - Learning of each cascade stops when the error rate is achieved (1% for positive, 37.5% for negative)
 - Last cascade stops after collecting 5000 weak classifiers
 - Result in 4-7 cascades
 - 2-3 hours to finish training one category on a 8-core machine

1. C. Huang, et. al. Boosting nested cascade detector for multi-view face detection. ICPR, 2004.

- □ No image resizing
- Any scale, any aspect ratio
- Adapt the model size to the same size as the object candidate bounding box

Regionlet based model

Applied to candidate boxes

Datasets

- PASCAL VOC 2007, 2010
 - □ 20 object categories
- ImageNet Large Scale Object Detection Dataset
 - □ 200 object categories
- Investigated Features
 - HOG
 - LBP
 - Covariance
 - Deep Convolutional Neural Network (DCNN) feature (only for the ImageNet challenge)

Experiments: PASCAL VOC

Table 1. Performance on the PASCAL VOC 2007 dataset (Evaluated using Average Precision or mean Average Precision: mAP, no DCNN feature, no outside data)

												-			person	-	-				
DPM [12] ¹																					
SS_SPM [25] ²	43.5	46.5	10.4	12.0	9.3	49.4	53.7	39.4	12.5	36.9	42.2	26.4	47.0	52.4	23.5	12.1	29.9	36.3	42.2	48.8	33.8
Objectness [3]																					
Regionlets-S																					
Regionlets-M	54.2	52.0	20.3	24.0	20.1	55.5	68.7	42.6	19.2	44.2	49.1	26.6	57.0	54.5	43.4	16.4	36.6	37.7	59.4	52.3	41.7

		VOC 2007	VOC 2010	Results year
	DPM(WC) [12]	35.4	33.4	2008
	UCI_2009 [7]	27.1	N/A	2009
	INRIA_2009 [13]	28.9	N/A	2009
	NLPR(WC) [10]	N/A	36.8	2010
	MITUCLA(WC) [10]	N/A	36.0	2010
	UVA [10]	N/A	32.9	2010
1	MIT_2010 [31]	29.6	N/A	2010
	Song et al. (WC) [23]	37.7	36.8	2011
	Li et al. (WC) [18]	35.2	N/A	2011
	SS_SPM [25]	33.8	34.1	2011
	Cinbis et al. (WC) [5]	35.0	N/A	2012
	Ours (Regionlets)	41.7	39.7	2013

Table 2: Performance comparison with state of the art

ImageNet Challenge

Methods	mAP
UvA-EuVision	22.6% (with DCNN feature)
Regionlets with deep features ⁽¹⁾	20.9% (with DCNN feature)
Regionlets without deep features ⁽²⁾	19.6% (no DCNN feature)
OverFeat-NYU	19.4% (DCNN)
Toronto A	11.2% (N/A)
SYSU_Vision	10.5% (N/A)

(1) The result of using only a single method and single set of parameters, no context. No combining!

(2) The result of using traditional features only – no DCNN features were used.

Check our presentation at the ILSVRC2013 workshop for more details!

- 0.2 second per image using a single core if candidate bounding boxes are given, real time(>30 frames per second) using 8 cores
- 2 seconds per image to generate candidate bounding boxes
- 2-3 hours to finish training one category on a 8-core machine

Conclusions

- □ A new object representation for object detection
 - Non-local max-pooling of regionlets
 - Relative normalized locations of regionlets
 - Flexibility to incorporate various types of features
- A principled data-driven detection framework, effective in handling deformation, multiple scales, multiple viewpoints
- Superior performance with a fast running speed