
Accurate Object Detection with Location Relaxation
and Regionlets Re-localization

Chengjiang Long1, Xiaoyu Wang2, Gang Hua1, Ming Yang3, and Yuanqing Lin2

1 Stevens Institute of Technology, Hoboken, NJ 07030
2 NEC Laboratories America, Cupertino, CA 95014

3 Facebook, Menlo Park, CA 94026

Abstract. Standard sliding window based object detection requires dense clas-
sifier evaluation on densely sampled locations in scale space in order to achieve
an accurate localization. To avoid such dense evaluation, selective search based
algorithms only evaluate the classifier on a small subset of object proposals.
Notwithstanding the demonstrated success, object proposals do not guarantee
perfect overlap with the object, leading to a suboptimal detection accuracy. To
address this issue, we propose to first relax the dense sampling of the scale space
with coarse object proposals generated from bottom-up segmentations.Based on
detection results on these proposals, we then conduct a top-down search to more
precisely localize the object using supervised descent. This two-stage detection
strategy, dubbedlocation relaxation, is able to localize the object in the contin-
uous parameter space. Furthermore, there is a conflict between accurate object
detection and robust object detection. That is because the achievementof the
later requires the accommodation of inaccurate and perturbed object locations in
the training phase. To address this conflict, we leverage the rich spatial informa-
tion learned from the Regionlets detection framework to determine where theob-
ject is precisely localized. Our proposed approaches are extensivelyvalidated on
the PASCAL VOC 2007 dataset and a self-collected large scale car dataset. Our
method boosts the mean average precision of the current state-of-the-art (41.7%)
to 44.1% on PASCAL VOC 2007 dataset. To our best knowledge, it is the best
performance reported without using outside data4.

1 Introduction

An object may appear in any locations and scales in an image defined by the continuous
parameter space spanned by(x, y, s, a), where(x, y) is the object center point, ands
anda are the scale and aspect ratio of the object. In particular, different aspect ratios
generally correspond to different viewpoints, leaving a difficult open question for robust
object detection.

In order to accurately localize the object in the image, sliding window based detec-
tor [1–5] requires densely sampling a fixed size candidate object window (i.e., a base
window) from the continuous parameter space at each scale ofa scale-space image
pyramid. Then, a binary decision is made for each specific window to predict whether

4 Convolutional neural network based approaches are commonly pre-trained on a large scale
outside dataset and fine-tuned on the VOC dataset.
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Figure 1: Sample detection results applying our detection framework to the PASCAL
VOC 2007 dataset. First row: bus and boat detection. Second row: bottle, aeroplane and
bird detection. Third row: bicycle detection.

it contains the object or not. To deal with different viewpoints of the object, one often
discretizes the space of aspect ratio to define different base windows, and one classifier
needs to be trained for each base window to detect the same object with different
viewpoints.

Obviously, sliding window based approaches could be computationally prohibitive
to obtain precise localization of the object, as it may potentially involve evaluating the
classifier on millions or even billions of candidate windows. To reduce the computa-
tional cost, as suggested by the seminal Viola-Jones detector [6], a cascade classifier
allows to early reject obvious non-object window, and henceachieves real-time per-
formance. This strategy has been widely adopted in the literature. However, unless the
weak classifier in the cascade can be efficiently evaluated,e.g., by leveraging Haar
features with integral images, the computational cost evenwith early rejection may still
be very high.

Beyond cascade classifiers, the computational cost could befurther reduced ei-
ther from top-down or bottom-up approaches. Top-down methods, such as branch-and-
bound [7], divide and conquer [8], and crosstalk [9]etc., take advantage of observations
from already evaluated windows to prune the windows which are not likely to have
the object. While bottom-up methods guide their search by firstly identifying category
independent candidate object locations before applying category specific detectors. This
can be achieved either through low-level segmentations [10, 11] or through some “ob-
jectness” [12] measurement of a candidate window. Since thenumber of classifier eval-
uation is drastically pruned in such bottom-up methods, even computational intensive
spatial pyramid matching [13], which is very successful in image classification, can be
adopted for object detection.

Notwithstanding the great success of these methods for reducing the computational
cost for object detection, none of these methods searched for the object in the full
continuous parameter space,i.e., the center point, scale, and aspect ratio of the object.
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In other words, for top-down approaches, the detection accuracy is still bounded by
the level of quantization these algorithms operating on. For bottom-up approaches,
the recall of the detector is bounded by the recall of the category independent object
proposal.

Moreover, most of the above approaches still rely on classification models to lo-
calize the object. While a classifier could be robust due to large scale training, it is
not necessarily optimized for accurate object localization. What worsens the situation
is that many detectors such as DPM [4] are not trained on the exact ground truth
positive samples. These detectors allow samples with sufficient overlap with the ground
truth being positive training samples, for either data augmentation purpose or a more
comprehensive modeling of visual appearance among different positive samples. Thus
in contrast to aiming at precise localization as much as possible, the visual classification
models are learned to accommodate inaccurate localizations.

These observations motivate us to develop a detection framework which is capable
of precisely searching for the object in a full parameter space with favorable efficiency.
To achieve this goal, we first relax dense sampling of the object location and scale,
dubbed the namelocation relaxation, and only evaluate the detector at a much coarser
set of locations and scales. For coarse detection windows which have relatively high
response, we apply supervised descent search [14] to find potential object hypothesis
by simultaneously optimizing their center point, scale, and aspect ratio. The resulting
detections are much more improved with supervised descent search but still not suffi-
cient in terms of accurate localization. Thus we introduce Regionlets Re-localization,
which is naturally built based on the quantized Regionlets features, to directly predict
the true object location based on results from supervised descent search.

Figure 2 takes person detection as an example to illustrate our object detection
framework. By applying an object detector to bottom-up object proposals, we obtain
coarse detections,i.e., the bounding boxes shown in Figure 2(b). Among them, the
red box is relatively confident detection compared to others. Through the supervised
descent search starting from the red bounding box, a better detection is obtained as the
dash box in Figure 2 (c). Finally we apply Regionlets Re-localization to determine the
object location as shown in Figure 2 (d). We show some sample detection results on the
PASCAL VOC 2007 dataset in Figure 1.

The contribution of this paper lies on three aspects. Firstly, it proposed coarse
detection plus supervised descent search in a fully parameterized location space for
generic object detection which shows promising performance. Secondly, it proposed
a novel Regionlets Re-localization method which complements the suboptimal object
localization performance given by object detectors. Finally, our detection framework
achieves the best performance on the PASCAL VOC 2007 datasetwithout using any
outside data. It also demonstrates superior performance onour self-collected car dataset.

2 Our approach

Our object detection framework is composed of three key components: bottom-up ob-
ject hypotheses generation, top-down object search with supervised descent and object
re-localization with a localization model.
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(a) A testing image (b) Coarse detections (c) Supervised  

descent search 

(d) Regionlets  

Re-localization

Figure 2: Illustration of the proposed object detection framework. (a) A testing image
on which we want to detect all persons. (b) Coarse detection results obtained from
object detectors applied to bottom-up proposals. The red bounding box indicates a
relatively confident detection. (c) More confident detections obtained through su-
pervised descent search. (d) The Regionlets Re-localization is employed to produce
better localization. A non-max suppression procedure is followed to generate the final
detection result.

There are several alternatives to obtain object hypotheses. For example, through the
objectness measurement [12], the saliency analysis or their combinations [15], or using
segmentation cues [10]. Because our top-down search algorithm is applied locally, we
expect the bottom-up object hypotheses to split the object location space evenly, to
avoid the search algorithm converging to the same local minimum. To this end, we
employ low-level segmentation to propose the object hypotheses. The superpixel seg-
mentation merges similar pixels locally into disjoint setswhich perfectly matches our
need. However, over-segments only provide small object candidates. To obtain object
hypotheses for large objects, the over segmented superpixels are gradually merged to
produce larger candidates.

The detection with location relaxation takes coarse detection results from a detector
applied on the bottom up object proposals. Then it searches the object location guided
by discriminatively learned descent model inspired by Xiong and De la Torre [14]. The
learned supervised descent model is used to predict the nextmore accurate object loca-
tion to explore based on observations from the current location. Although our method is
applicable with any black box object detector, we use the Regionlets detector [16] due
to its outstanding performance and flexibility to detect objects in any viewpoints.

All the detection results, including the original coarse detections as well as detec-
tions generated by supervised descent search, are fed to ourRegionlets Re-localization
process to more accurately locate the target objects.

2.1 Bottom-up object proposal

To complement our top-down searching strategy, we employ a segmentation based
bottom-up scheme to generate our initial set of candidate searching locations. Similar
to [10], we start with over-segments (i.e., superpixels) of an image and then hierarchi-
cally group these small regions to generate object hypotheses. We use [17] to generate
superpixel segments. A segmented regionri is described by several characteristics ,
i.e., the size of the region (total number of pixels), color histograms, and the texture
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information (gradient orientation histograms). Four neighbor region similarities are
defined based on these characteristics as shown in the following equations:

Sc(ri, rj) =

n
∑

k=1

min(cki , c
k
j ), (1)

Ss(ri, rj) = 1−
sz(ri) + sz(rj)

sz(im)
, (2)

St(ri, rj) =
n
∑

k=1

min(tki , t
k
j ), (3)

Sf (ri, rj) = 1−
sz(bbij)− sz(ri)− sz(rj)

sz(im)
. (4)

wherecki is thekth dimension of the color histogram,sz(ri) is the number of pixels
in image regionri, im stands for the whole image,tki is the kth dimension of the
texture histogram,bbij is the rectangular region which tightly bound regionri andrj .
Sc, Ss andSt are the color similarity, size similarity, texture similarities, respectively.
Sf measures how the combined two regions will occupy the rectangular bounding box
which tightly bounds them. The similarity of two adjacent regions can be determined
by any combination of the four similarities.

The two regions with the highest similarityw.r.t the similarity measurement are
merged first and this greedy process is repeated following anagglomerative style clus-
tering scheme. Each merging step produces a bounding box which bounds the merged
two regions. In principle, we want regions from the same object to be merged to-
gether. Each low level cue contributes from its aspect. For example, the color similarity
measures the color intensity correlation between neighborregions which encourage
regions similar in color to be merged together. The size similarity encourages small
regions to merge first. The fill similarity encourages the bounding box to tightly bound
the merged region. The texture similarity measures the similarity of appearance in
gradient, which is complementary to color similarity. The usage of similarity measures
and segmentation parameters are detailed in the experimentsection.

2.2 Top-down Supervised Object Search

Once the coarse object hypotheses are obtained, we apply an object detector to deter-
mine relatively confident detections. The top-down supervised descent search is only
applied to these confident detections.

Supervised descent is a general approach to optimize an objective function which
is neither analytically differentiable nor practical to benumerically approximated. It
is very suitable for vision problems when visual feature is involved in optimizing the
objective function, because most visual features such as SIFT, HOG, and LBP his-
togram are not differentiable with respect to locations. Instead of computing the descent
direction from the gradient, supervised descent uses a large number of examples to
train a regression model to predict the descent direction. The training process requires
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features, which serves as the regressor, to be a fixed length vector, while bottom up
segmentations naturally produces arbitrary size proposals. To deal with this issue, we
normalize the bounding boxes to a fixed size. In the following, we explain how the
supervised descent is adopted to find objects in a full parameter space.

Given an initial object hypothesis locationo0 = [x0, y0, s0, a0]
T , which may not

accurately bound the object, our objective is to use supervised descent to greedily adjust
the bounding box by a local movement∆o = [∆x,∆y,∆s,∆a]T , leading to a more
accurate localization of the object. The goal of the supervised descent training process
is hence to learn a sequence ofK models to predict the optimal descent direction of
the bounding box for each step of the supervised descent, where the needed supervised
descent stepK is also automatically identified from the training process.

More specifically, denoteΦ(ok−1) to be then dimensional feature vector extracted
from the bounding box defined byok−1 in the k − 1 step of the supervised descent
process, we learn ann× 4 linear projection matrixRk−1 = [rxk−1

, r
y
k−1

, rsk−1
, rak−1

]T

and a four dimensional bias vectorbk−1 = [bxk−1
, b

y
k−1

, bsk−1
, bak−1

]T so that the bound-
ing box movement can be predicted as∆ok = R

T
k−1

Φ(ok−1) + bk−1 based on the
location from thek − 1 step.Φ(·) indicates the feature extracted which is HOG and
LBP histogram in our experiments.

We first explain the training process for the first superviseddescent model, fol-
lowed by details to train models sequentially after. Given aset of labeled ground truth
object locations{oi

∗
= (xi

∗
, yi

∗
, si

∗
, ai

∗
)}, we construct the starting locations{oi

0
=

(xi
0
, yi

0
, si

0
, ai

0
)} of the object by applying a random perturbation from the ground truth

but assure that they are overlapped. The training of the projection matrixR0 and the
biasb0 is to solve the following optimization problem:

arg min
R0,b0

∑

i

||∆o
i
0∗

−∆o
i
0
||2, (5)

where∆o
i
0∗

= o
i
∗
− o

i
0

is the true movement and∆o
i
0
= R

T
0
Φ(oi

0
) + b0 is the

predicted displacements of the state vector. The optimalR0 andb0 are computed in a
closed-form by a linear least square method.

The subsequentRk andbk for k = 1, 2, . . ., can be learned iteratively. At each
iteration, we update the new locations determined by the previous modelRk−1 and
bk−1,

o
i
k = o

i
k−1

+R
T
k−1

Φ(oi
k−1

) + bk−1. (6)

By updating∆o
i
k∗ = o

i
∗
−o

i
k and∆o

i
k = R

T
k Φ(o

i
k−1

)+bk−1 the optimalRk andbk

can be learned from a new linear regression problem by minimizing

arg min
Rk,bk

∑

i

||∆o
i
k∗ −∆o

i
k||

2. (7)

The error empirically decreases as more iterations are added [14]. In our experiments,
this training of supervised descent models often convergedin 20-30 steps.

Given a testing image, we firstly apply the cascade regionlets detector [16] to the
coarse bottom-up object candidates. Object hypotheses which produces high detection
scores are fed to the iterative supervised descent search process to perform local search.
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New locations output by supervised descent search are re-evaluated by the object de-
tector to obtain the detection score. By ranking all the detection scores from searched
locations, we keep the most confident detections.

2.3 Regionlets Object Re-localization

The supervised descent search introduced in the previous subsection significantly im-
prove the detection rate by scanning more predicted object candidates. In this section,
we assume the object has already been detected, but with non-perfect localization.
To further improve the object detection system, we train a model specific for object
localization taking advantage of features extracted from the Regionlets detection model.

The Regionlets detector [16] is composed of thousands of weak classifiers learned
with RealBoost. These weak classifiers are formed as severalcascades for early re-
jection, yielding fast object detection. The cascade structure is not related to our re-
localization approach and would not be included in the following presentation without
any misunderstanding. The input of each weak classifier in the Regionlets model is a 1-
D feature extracted from a rectangular region in the detection window. In the trainging
process, these 1-D features are greedily chosen to minimizethe logistic loss over all
training samples, which is based on classification errors. More details about the Re-
gionlets learning and testing are beyond the scope of this paper and can be found from
[16].

Not only does the Regionlets training process greedily select discriminative visual
appearances, but also it determines the spatial regions to extract the 1-D feature. Thus
the resulting weak features extracted from regionlets implicitly encode thousands of
spatial locations, which could be used to further predict the precise location of an object.
It is worth noting that the detector learning only targets onminimizing the classification
error which does not necessarily guarantee that the localization error is also minimized
at the same time.

To leverage the rich spatial information encoded in the Regionlets model, we let
each Regionlet vote the object’s position. Given the objectlocation(l, t, r, b) detected
by the object detector ((l, t, r, b) represents the object’s left, top, right and bottom
coordinates, respectively), the problem is equivalent to predict the localization error
(∆ln, ∆lt, ∆lr, ∆lb) of the current detection so that the true object location is computed
as:

l∗ = l + w∆ln, t∗ = t+ h∆tn,

r∗ = r + w∆rn, b∗ = b+ h∆bn. (8)

Here(l∗, t∗, r∗, b∗) is the ground truth object location.(l, t, r, b) is the bounding box
detected with the Regionlets model.w = r − l + 1, h = b − t + 1 are the detected
bounding box width and height respectively.(∆ln, ∆tn, ∆rn, ∆bn) are the relative
localization error between the ground truth and the currentdetection. It is normalized by
the width and height of the detected objects5. Detections from Regionlets model have

5 We empirically found that using the four coordinates for our localization model produces
better performance than using(x, y, s, a). Thus we choose(l, t, r, b) in our Regionlets Re-
localization approach.
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various sizes, we observe that normalizing displacement errors is critical to stabilize the
training and prediction.

Training the localization model is to learn a vectorV , so that we can predict the
localization error :∆L = V TR, where∆L is either∆ln, ∆tn, ∆rn, or ∆bn, R is the
feature extracted for from regionlets. We minimize the squared localization error in the
model training phase. More specifically, we solve a support vector regression problem
for each of the four coordinates respectively:

min
V

{

‖V ‖

2
+ C

M
∑

m=1

max(0, |∆Lm − V TRm| − ǫ)2

}

, (9)

whereV is the coefficient vector to be learned,∆Lm is the normalized localization
error of training samplem, Rm is the feature extracted from all the Regionlets in the
object detection model for themth sample as explained in the following,M is the total
number of training examples. The first term in the Equation (9) is the regularization
term, whileC is a trade-off factor between the regularization and the sumof squared
error,ǫ is the tolerance factor. The problem can be effectively solved using the publicly
available liblinear package [18].

The featureR is extracted from the discriminatively learned Regionletsdetection
model. However, directly applying Regionlets features produces poor performance.
Based on the weak classifier learned on each Regionlets feature, we transfer the 1-
D Regionlet feature into a sparse binary vector. Each Regionlets weak classifier is a
piece-wise linear function implemented using a lookup table:

hi =

8
∑

j=1

wi,jδ(Q(fi)− j), (10)

wherefi is the 1-D feature extracted from a group of regionlets,Q(fi) quantize the
featurefi into an integer from 1 to 8.δ(x) = 1 whenx = 0 otherwise 0.{wi,j}

8

j=1

is the classifier weights learned in the boosting training process. We transferQ(fi)
into an 8-dimensional binary vectorr, where thejth dimension is computed asr(j) =
1(Q(fi) = j), and1(·) is the indicator function. Apparently, there is one and onlyone
nonzero dimension inr. Note that the Regionlets object detector is a combination of N
weak classifiers:

H =
N
∑

i=1

hi. (11)

Thus by concatenating these binary vectors from all weak classifiers, the detection
model naturally produces8N dimensional sparse vectors, denoted asR = (rT

1
, rT

2
, . . . , rTN )T .

It serves as the feature vectorRm in Equation (9). Intuitively, each Regionlets feature
fi has 8 options to vote for the actual object location depending on the binarized feature
vectorri. Learning the weight vectorV in Equation (9) is to jointly determine the votes
(regression coefficients) in 8 different scenarios for all Regionlets features.

The sparse binary features extracted from regionlets are very high dimensional. We
observed significant over-fitting problem if there are not enough training samples. To
avoid over-fitting during training, we randomly sample 80k bounding boxes around
ground truth objects to train the localization model.
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Discussion The supervised descent search is designed to search more object candidates
in a principled way to increase the detection rate, and a following discriminative visual
model (Regionlets detector) is mandatory to determine the detection scores of new
locations. Regionlets Re-localization is only used to predict the accurate object location.
There is no detector followed to evaluate the new location asin the supervised search.
Thus it adjusts the detection to a more precise location without changing the detection
score. In contrast, using the object detector to re-evaluate the detection score decreases
the performance. Because the newly predicted location usually gives lower detection
score which causes the predicted location being eliminatedin the post non-max sup-
pression process. To summarize, the role of supervised descent search is to find ob-
jects based on detections with coarse locations. Regionlets Re-localization is conducted
on fine detections from supervised descent search. It aims atfurther improvement in
accurate localization based on reasonable good localizations from supervised descent
search. Leaving out any of these two schemes would significantly hurt the detection
performance according to our observation.

3 Experiments

We evaluate the proposed detection framework with the Regionlets detector [16] on the
PASCAL VOC2007 dataset and a self-collected car dataset. Our collected car dataset
contains 5559 images (17501 cars) for training and 3893 images (12546 cars) for test-
ing. We use the average precision (AP) and mean average precision (mAP) as perfor-
mance measurement. We first analyze the performance of location relaxation search
detection, followed with quantitative results of Regionlets Re-localization.

3.1 Location Relaxation Search

In the training phase of supervised descent, our starting points include the one from the
Regionlets [16] confident detection and a set of random perturbations from the ground-
truth. We found adding such starting points with perturbation samples to be necessary
for a stable training. In testing phase, it always starts from Regionlets coarse detections.
In this subsection, Regionlets [16] is used as a baseline forperformance comparison to
better understand the location relaxation search. We first study the performance of the
location relaxation search with different bottom-up object proposals. Then we choose
the best bottom-up setting for a thorough performance evaluation.

Effects of bottom-up object proposal The top-down search strategy is evaluated on
bottom-up object hypotheses using several different settings based on 1) the color space
used for over-segmentation. 2) the algorithm parameter used for over-segmentation, 3)
the similarity functions (defined in Section 2.1) used for generating object proposals.

We use the graph-based image segmentation proposed by Felzenszwalbet al. [17](de-
noted as F-g) with the scale parameter k = 50 or k=100 to capture both small and large
regions. Two color space are investigated in our experiments, i.e., the RGB color space
and the Lab color space. Following Section 2.1, the four different similarity measures
used are color similaritySc, size similaritySs, texture similaritySt, and fill similarity
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Table 1: Cues used to generate object hypotheses. The last column shows average
number of object hypotheses generated per image based on these cues.
#cues Color space Segmentation Similarity #object hypotheses

1 RGB F-g (k=50) (Sc, St, Ss, Sf ) 955
2 RGB F-g (k=50) (Sc, St, Ss, Sf ), (St, Ss, Sf ) 1454
4 RGB F-g (k=50, k=100) (Sc, St, Ss, Sf ), (St, Ss, Sf ) 2045
8 RGB, Lab F-g (k=50, k=100) (Sc, St, Ss, Sf ), (St, Ss, Sf ) 3367

Sf . There are two levels of combination of these four similarity measurements. 1) Simi-
larity level: combining these similarities as the final similarity measurement for merging
neighbor regions. For example,(St, Sf ) means the final similarity is the weighted
summation of texture similarity and fill similarity. 2) Object hypotheses level: object
proposals generated using different similarity combinations are collected together for
coarse detection. The first combination does not increase the number of object proposals
but it affects the neighbor merging activity. The second combination increases the total
number of object proposals.

 26
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 1  2  3  4  5  6  7  8

m
A
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Number of cues

Regionlets

LRS w/o aspect ratio
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Figure 3: The detection mean average precision vs number of cues used on the
PASCAL VOC 2007 dataset.Regionlets: the performance of regionlets without local
search.LRS w/o aspect ratio: Location relaxation search without searching optimal
object aspect ratio.LRS w/ aspect ratio: Location relaxation search with aspect ratio
optimization.

We call one bottom-up object hypotheses generation setup asone cue. The number
of object hypotheses is increased by applying different cues independently and col-
lecting all the resulting object hypotheses. Obviously, employing more cues increases
the chance of covering the target object. Figure 3 shows the detection performance of
our top-down supervised search. We evaluated four detection settings which gradually
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Table 2: Performance comparison with the baselines on the PASCAL VOC 2007
dataset (average precision %). LRS w/o aspect ratio: location relaxation search without
optimizing aspect ratio. LRS w/ aspect ratio: location relaxation search with optimizing
aspect ratio.mAP is the mean average precision over all the 20 categories.

AP % aero bike bird boat bottle bus car cat chair cow table
Regionlets [16] 53.1 49.5 16.7 25.9 16.3 49.8 64.2 37.9 16.7 39.3 44.7

LRS w/o aspect ratio53.3 49.1 17.0 25.9 17.9 50.6 64.5 41.5 17.2 40.146.8
LRS w/ aspect ratio54.2 52.4 18.0 27.3 22.5 53.8 68.6 43.1 20.6 42.8 45.6

dog horse mbike person plant sheep sofa train tv mAP
Regionlets [16] 23.2 50.4 52.7 35.6 11.7 29.5 31.3 56.1 50.0 37.7

LRS w/o aspect ratio25.0 51.6 53.3 36.6 13.0 29.6 34.4 55.6 50.5 38.7
LRS w/ aspect ratio26.2 56.2 57.2 42.7 16.0 37.0 38.7 57.1 51.7 41.6

increase the number of cues to get object hypotheses. The configurations are summa-
rized in Table 1. Figure 3 presents the result including the performance of the original
coarse Regiolets detection, the performance of our top-down search without optimizing
object aspect ratio (a setup close to branch-and-bound, cross-talk, divide and conquer
search) and the performance of our top-down search with optimizing the object aspect
ratio. Although achieving promising improvement by searching only for the correct
object center and scale, ignoring the aspect ratio during supervised descent search
substantially suppresses the best detection accuracy we can obtain. Augmented with
aspect ratio search, our top-down supervised search consistently improve the detection
performance with a large margin. The more cues we used, the better performance we
have. That is because our supervised descent search is targeted to find a local maximum
which cannot save missing objects which are far away from thecoarse detection.

Overall performance Table 2 shows the detailed performance for each object cate-
gory using 8 cues for coarse detection. Without aspect ratiosearch, our method only
improves the detection mean average precision by 1%. Addingaspect ratio to the su-
pervised descent procedure significantly boost the performance by 3% . Note that the
detection results of the Regionlets [16] detector reportedhere is the average precision
without conducting the exhaustive local grid search (i.e., only a coarse detection is
applied in order to validate the effectiveness of our supervised descent search). If such
exhaustive local grid search is conducted, it bumps the mAP to be 41.7% as reported
in [16]. Table 2 suggests that our principled supervised descent search achieves compa-
rable results with exhaustive dense local search.

Understanding supervised descent As aforementioned, training the supervised de-
scent models in our experiments takes about 20 to 30 iterations to converge. Hence in
testing, the supervised descent would run up to 20 to 30 steps. To better understand
the supervised descent steps, we use an example to visualizehow the bounding box
would be evolving with the progress of the supervised descent, as illustrated in Figure 4
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Figure 4: The trace of the searched
bounding box center in supervised
descent.
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Figure 5: The distance between the
searched bounding box center and
the true object center in supervised
descent.

and Figure 5. In Figure 4, it shows the trace of the object center (the pink curve) when
supervised descent is gradually applied. The blue box is theinitial coarse detection
based on the bottom-up segmentation and the red box is where the search converged. We
plot the distance between the searched bounding box center and the ground truth object
center in Figure 5. The distance is gradually reduced in the search process. Note that this
is just an illustration for understanding the process. In practice, the algorithm does not
necessarily always converge to a true detection. An initialization with a false detection
which is far away from any ground truth objects may result in ahigher false positive
during the local search. We rely on the object detector to eliminate false positives.

3.2 Regionlets Re-localization

Table 3 shows the performance of our Regionlets Re-localization approach built upon
the location relaxation search on the PASCAL VOC 2007 dataset. Our localization
model improves 19 out of 20 object categories. For the personcategory which usually
has many articulated poses, our approach dramatically boosts the average precision by
6.3%. It suggests that even a dense search with the classification model does not solve
the precise localization problem. This can be explained by the fact that the classification
model is targeted for robust detection which accommodates inaccurate object locations,
while a localization model largely complements the effort for accurate object localiza-
tion.

Table 4 shows the comparison between our Regionlets Re-localization and the lo-
cation prediction approach used in DPM (DPM-BB). In contrast to DPM-BB for which
the improvements are within 0.5% for most of the object categories, our method yields
a larger improvement, in average 2.5%. Combined with location relaxation search, our
detection approach produces 44.1% mean average precision on the PASCAL VOC 2007
dataset, which to our best knowledge, is the best performance reported on this dataset
without using outside data. Table 5 presents the performance comparison of our detector
with recent state-of-the-art detection systems.
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Table 3: Effectiveness of Regionlets Re-localization. LRS: Regionlets with location
relaxation search with aspect ratio search. LRS-RR: Location relaxation search and
Regionlets Re-localization

AP % aero bike bird boat bottle bus car cat chair cow table
LRS 54.2 52.4 18.0 27.3 22.5 53.8 68.6 43.1 20.6 42.8 45.6

LRS-RR 55.8 53.5 22.1 28.8 25.1 54.1 71.5 45.9 22.3 45.7 50.6

dog horse mbike person plant sheep sofa train tvmAP
LRS 26.2 56.2 57.2 42.7 16.0 37.0 38.7 57.1 51.7 41.6

LRS-RR 29.6 58.4 55.6 49.0 17.6 41.1 42.4 59.5 54.2 44.1

Table 4: Performance comparison between our Regionlets Re-localization and the
bounding box prediction used in deformable part base model.DPM base: base DPM
performance in [19]; DPM with BB: DPM with bounding box prediction in [19]. LRS
base: our base location relaxation search with aspect ratiosearch. LRS with RR: LRS
with Regionlets Re-localization.

DPM base DPM with BB Improvement

26.3% 26.8% 0.5%

LRS base LRS with RR Improvement

41.6% 44.1% 2.5%

The detection performance of Regionlets Re-localization on the car dataset is eval-
uated with two different criteria. The first criterion treats a detection as true detection
if it has more than 50% overlap (intersection/union) with the ground truth. The second
criterion set the threshold to be 70%, which requires much better localization. As shown
in Table 6, with the 0.5 overlap criterion, our Regionlets Re-localization improves the
performance by 2.6%. With the 0.7 overlap criterion, it largely improves the average
precision by 9.1%. This experiment strongly demonstrates that the detections are much
more accurate after Regionlets Re-localization.

3.3 Run-time Speed

Our detection system runs at 4 frames per second if the over-segments are ready. The
over segmentation took 1 seconds per image. However, recentapproaches [25] show it
is possible to obtain real-time over segmentation.

4 Conclusions

In this paper, we proposed an object detection strategy which is a combination of
bottom-up object hypotheses generation and top-down localobject search for generic
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Table 5: Comparison with state of the arts using mAP over 20 classes. “WC” means the
method utilizes context cues. We do not use any context information in our method.

VOC 2007 Results year

DPM(WC) [4] 35.4 2008

UCI 2009 [20] 27.1 2009

INRIA 2009 [21] 28.9 2009

MIT 2010 [2] 29.6 2010

Songetal(WC) [22] 37.7 2011

Li etal(WC) [23] 35.2 2011

SSSPM [10] 33.8 2011

Cinbisetal(WC) [24] 35.0 2012

Regionlets [16] 41.7 2013

Ours(LRS + RR) 44.1 2014

Table 6: Performance of Regionlets Re-localization on the car dataset.0.5 ov: A true
detection must have more than 50% overlap with the ground truth. 0.7 ov: A true
detection much have more than 70% overlap with ground the truth.

0.5 ov 0.7 ov

LRS 62.7% 34.8%

LRS-RR 65.3% 43.9%

Improvement 2.6% 9.1%

object detection. Our framework optimizes the object location in a full parameter space
which can also search the aspect ratio of the object. The Regionlets Re-localization
model complement existing classification models and can produce more precise local-
ization, pushing even more accurate object detection.
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