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Abstract. Standard sliding window based object detection requires dense clas-
sifier evaluation on densely sampled locations in scale space in orderiégvech
an accurate localization. To avoid such dense evaluation, selectivd d&med
algorithms only evaluate the classifier on a small subset of object altspos
Notwithstanding the demonstrated success, object proposals do mantpe
perfect overlap with the object, leading to a suboptimal detection accufacy
address this issue, we propose to first relax the dense sampling oathespace
with coarse object proposals generated from bottom-up segment&ased on
detection results on these proposals, we then conduct a top-dowh seanore
precisely localize the object using supervised descent. This two-stégside
strategy, dubbetbcation relaxation, is able to localize the object in the contin-
uous parameter space. Furthermore, there is a conflict betweerat@cobject
detection and robust object detection. That is because the achievefmiet
later requires the accommodation of inaccurate and perturbed objatiblegin
the training phase. To address this conflict, we leverage the rich spatietiaqf
tion learned from the Regionlets detection framework to determine wheobthe
ject is precisely localized. Our proposed approaches are extengalagted on
the PASCAL VOC 2007 dataset and a self-collected large scale car dddase
method boosts the mean average precision of the current state-axft{dd- 7%)
to 44.1% on PASCAL VOC 2007 dataset. To our best knowledge, it is the be
performance reported without using outside data

1 Introduction

An object may appear in any locations and scales in an imdgeedeby the continuous
parameter space spanned(byy, s, a), where(z, y) is the object center point, and
anda are the scale and aspect ratio of the object. In particuiiereint aspect ratios
generally correspond to different viewpoints, leavingféi@ilt open question for robust
object detection.

In order to accurately localize the object in the image,istjdvindow based detec-
tor [1-5] requires densely sampling a fixed size candidajecblwindow {.e., a base
window) from the continuous parameter space at each scadeschle-space image
pyramid. Then, a binary decision is made for each specifidointo predict whether

4 Convolutional neural network based approaches are commonliygined on a large scale
outside dataset and fine-tuned on the VOC dataset.
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Figure 1: Sample detection results applying our detectiaméwork to the PASCAL
VOC 2007 dataset. First row: bus and boat detection. Seandottle, aeroplane and
bird detection. Third row: bicycle detection.

it contains the object or not. To deal with different viewptsi of the object, one often
discretizes the space of aspect ratio to define differerd Wésdows, and one classifier
needs to be trained for each base window to detect the sarmeetohith different
viewpoints.

Obviously, sliding window based approaches could be coatjmumally prohibitive
to obtain precise localization of the object, as it may ptiédly involve evaluating the
classifier on millions or even billions of candidate windows reduce the computa-
tional cost, as suggested by the seminal Viola-Jones detflt a cascade classifier
allows to early reject obvious non-object window, and heackieves real-time per-
formance. This strategy has been widely adopted in thetitez. However, unless the
weak classifier in the cascade can be efficiently evaluaed, by leveraging Haar
features with integral images, the computational cost eu#mnearly rejection may still
be very high.

Beyond cascade classifiers, the computational cost couliirtieer reduced ei-
ther from top-down or bottom-up approaches. Top-down nmathsuch as branch-and-
bound [7], divide and conquer [8], and crosstalk¢&], take advantage of observations
from already evaluated windows to prune the windows whi@hraot likely to have
the object. While bottom-up methods guide their search bihfiidentifying category
independent candidate object locations before applyitegoay specific detectors. This
can be achieved either through low-level segmentationsljCor through some “ob-
jectness” [12] measurement of a candidate window. Sincauhgber of classifier eval-
uation is drastically pruned in such bottom-up methodsn@ammputational intensive
spatial pyramid matching [13], which is very successfuhirage classification, can be
adopted for object detection.

Notwithstanding the great success of these methods focimgithe computational
cost for object detection, none of these methods searchethéoobject in the full
continuous parameter space,, the center point, scale, and aspect ratio of the object.
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In other words, for top-down approaches, the detectionracguis still bounded by
the level of quantization these algorithms operating orr. aitom-up approaches,
the recall of the detector is bounded by the recall of thegmateindependent object
proposal.

Moreover, most of the above approaches still rely on clasdiin models to lo-
calize the object. While a classifier could be robust due tgelacale training, it is
not necessarily optimized for accurate object localizatMvhat worsens the situation
is that many detectors such as DPM [4] are not trained on tlaetexound truth
positive samples. These detectors allow samples with &rifioverlap with the ground
truth being positive training samples, for either data aeigtation purpose or a more
comprehensive modeling of visual appearance among diff@sitive samples. Thus
in contrast to aiming at precise localization as much asiplesshe visual classification
models are learned to accommodate inaccurate localization

These observations motivate us to develop a detection Wwankevhich is capable
of precisely searching for the object in a full parameteicepaith favorable efficiency.
To achieve this goal, we first relax dense sampling of theabdgeation and scale,
dubbed the namkmcation relaxation, and only evaluate the detector at a much coarser
set of locations and scales. For coarse detection windovishwiave relatively high
response, we apply supervised descent search [14] to fimmhedtobject hypothesis
by simultaneously optimizing their center point, scaled aspect ratio. The resulting
detections are much more improved with supervised deseant!s but still not suffi-
cient in terms of accurate localization. Thus we introduegiBnlets Re-localization,
which is naturally built based on the quantized Regionletgures, to directly predict
the true object location based on results from supervisedete search.

Figure 2 takes person detection as an example to illustnateoloject detection
framework. By applying an object detector to bottom-up obj@oposals, we obtain
coarse detections,e., the bounding boxes shown in Figure 2(b). Among them, the
red box is relatively confident detection compared to oth€hsough the supervised
descent search starting from the red bounding box, a bedtection is obtained as the
dash box in Figure 2 (c). Finally we apply Regionlets Re-iaasion to determine the
object location as shown in Figure 2 (d). We show some sangitetion results on the
PASCAL VOC 2007 dataset in Figure 1.

The contribution of this paper lies on three aspects. Fir#tlproposed coarse
detection plus supervised descent search in a fully pasiretl location space for
generic object detection which shows promising perforreaiszcondly, it proposed
a novel Regionlets Re-localization method which complaméme suboptimal object
localization performance given by object detectors. Bnalur detection framework
achieves the best performance on the PASCAL VOC 2007 datagetut using any
outside data. It also demonstrates superior performanoarself-collected car dataset.

2 Our approach

Our object detection framework is composed of three key aorapts: bottom-up ob-
ject hypotheses generation, top-down object search wijibrsised descent and object
re-localization with a localization model.



(a) A testing image (b) Coarse detections (c) Supervised (d) Regionlets
descent search Re-localization

Figure 2: lllustration of the proposed object detectiomfesavork. (a) A testing image
on which we want to detect all persons. (b) Coarse detectsnlts obtained from
object detectors applied to bottom-up proposals. The rathdiiog box indicates a
relatively confident detection. (c) More confident detetdicobtained through su-
pervised descent search. (d) The Regionlets Re-localizasi employed to produce
better localization. A non-max suppression procedurelisvfied to generate the final
detection result.

There are several alternatives to obtain object hypoth&segxample, through the
objectness measurement [12], the saliency analysis ardbeibinations [15], or using
segmentation cues [10]. Because our top-down search éilgois applied locally, we
expect the bottom-up object hypotheses to split the obgdtion space evenly, to
avoid the search algorithm converging to the same localmim. To this end, we
employ low-level segmentation to propose the object hyggeh. The superpixel seg-
mentation merges similar pixels locally into disjoint setsich perfectly matches our
need. However, over-segments only provide small objeafidates. To obtain object
hypotheses for large objects, the over segmented supkspire gradually merged to
produce larger candidates.

The detection with location relaxation takes coarse dietecesults from a detector
applied on the bottom up object proposals. Then it seardteeshject location guided
by discriminatively learned descent model inspired by Xiamd De la Torre [14]. The
learned supervised descent model is used to predict themmetaccurate object loca-
tion to explore based on observations from the currentimecafithough our method is
applicable with any black box object detector, we use theidefs detector [16] due
to its outstanding performance and flexibility to detecteats in any viewpoints.

All the detection results, including the original coars¢éedéons as well as detec-
tions generated by supervised descent search, are fed Regionlets Re-localization
process to more accurately locate the target objects.

2.1 Bottom-up object proposal

To complement our top-down searching strategy, we emploggmentation based
bottom-up scheme to generate our initial set of candidatechng locations. Similar
to [10], we start with over-segmentse(, superpixels) of an image and then hierarchi-
cally group these small regions to generate object hypeth&¥e use [17] to generate
superpixel segments. A segmented regipis described by several characteristics ,
i.e, the size of the region (total number of pixels), color hggtons, and the texture
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information (gradient orientation histograms). Four inigr region similarities are
defined based on these characteristics as shown in the fotj@quations:

o(riyr me i, J (1)

sz(r;) + sz(r))

Ss(’l“i,’l“j) =1- sz(zm) , (2)
W(ri, ) Zmln ff,tf (3)

B sz(bb;j) — sz(r;) — sz(ry)
Sf(’l“i,’l“j) =1- J sz(zm) J . (4)

wherec! is the kth dimension of the color histogramz(r;) is the number of pixels
in image regionr;, im stands for the whole image? is the kth dimension of the
texture histogrampb;; is the rectangular region which tightly bound regiqrandr;.
Se, Ss and.S; are the color similarity, size similarity, texture similées, respectively.
S measures how the combined two regions will occupy the regcian bounding box
which tightly bounds them. The similarity of two adjacengimns can be determined
by any combination of the four similarities.

The two regions with the highest similarity.r.t the similarity measurement are
merged first and this greedy process is repeated followiraggiomerative style clus-
tering scheme. Each merging step produces a bounding bahwbiunds the merged
two regions. In principle, we want regions from the same obje be merged to-
gether. Each low level cue contributes from its aspect. kample, the color similarity
measures the color intensity correlation between neigihbgions which encourage
regions similar in color to be merged together. The sizelanity encourages small
regions to merge first. The fill similarity encourages therming box to tightly bound
the merged region. The texture similarity measures thelaiityi of appearance in
gradient, which is complementary to color similarity. Theage of similarity measures
and segmentation parameters are detailed in the expergaetibn.

2.2 Top-down Supervised Object Search

Once the coarse object hypotheses are obtained, we applyject detector to deter-
mine relatively confident detections. The top-down suedidescent search is only
applied to these confident detections.
Supervised descent is a general approach to optimize antiwbjéunction which

is neither analytically differentiable nor practical to bemerically approximated. It
is very suitable for vision problems when visual featurenigived in optimizing the
objective function, because most visual features such &%, $H1OG, and LBP his-
togram are not differentiable with respect to locationstéad of computing the descent
direction from the gradient, supervised descent uses & langnber of examples to
train a regression model to predict the descent directibe.tfaining process requires
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features, which serves as the regressor, to be a fixed leegtbry while bottom up
segmentations naturally produces arbitrary size propo3al deal with this issue, we
normalize the bounding boxes to a fixed size. In the followwwg explain how the
supervised descent is adopted to find objects in a full paerspace.

Given an initial object hypothesis locatian = [z, %o, 50, ao]”, which may not
accurately bound the object, our objective is to use supedvilescent to greedily adjust
the bounding box by a local movemedb = [Az, Ay, As, Aa]T, leading to a more
accurate localization of the object. The goal of the superidescent training process
is hence to learn a sequencelgéfmodels to predict the optimal descent direction of
the bounding box for each step of the supervised descentevithe needed supervised
descent stefx is also automatically identified from the training process.

More specifically, denot@(oj_1) to be then dimensional feature vector extracted
from the bounding box defined hy,_; in the k — 1 step of the supervised descent
process, we learn anx 4 linear projection matrisRy,_, = [r{_,,ry_,,r;_;,r¢ 4|7
and a four dimensional bias vectos_; = [b7_,,b7_,,b;_,,b¢_,]7 so thatthe bound-
ing box movement can be predicted s, = Rgflsﬁ(ok,_l) + by_1 based on the
location from thek — 1 step.®(:) indicates the feature extracted which is HOG and
LBP histogram in our experiments.

We first explain the training process for the first supervidedcent model, fol-
lowed by details to train models sequentially after. Givesetof labeled ground truth
object locations{o® = (z%,y%,s,a’)}, we construct the starting locatiod®) =
(zf, yb, 85, aly)} of the object by applying a random perturbation from the grbtruth
but assure that they are overlapped. The training of theeption matrixR, and the
biasby is to solve the following optimization problem:

arg min 2 [1405, — Aog 2, (5)

where Ao}, = ol — o} is the true movement ando) = R{'®(o}) + by is the
predicted displacements of the state vector. The optRaaandb, are computed in a
closed-form by a linear least square method.
The subsequer®; andb; for & = 1,2,..., can be learned iteratively. At each
iteration, we update the new locations determined by theigue modelR;_; and
0}, =01 +R}_8(0}_;) +bj_1. (6)

By updatingAoi, = o’ —o! andAo} = RI®(o! )+ by_; the optimalR, andby,
can be learned from a new linear regression problem by mangi

arg min Z || Aof, — Aoy ||*. (7)
K2

The error empirically decreases as more iterations arededdé. In our experiments,
this training of supervised descent models often conveirg20-30 steps.

Given a testing image, we firstly apply the cascade regismletector [16] to the
coarse bottom-up object candidates. Object hypotheseshvphoduces high detection
scores are fed to the iterative supervised descent searcegsto perform local search.
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New locations output by supervised descent search areataaded by the object de-
tector to obtain the detection score. By ranking all the ctéia scores from searched
locations, we keep the most confident detections.

2.3 Regionlets Object Re-localization

The supervised descent search introduced in the previdsgstion significantly im-
prove the detection rate by scanning more predicted obgulidates. In this section,
we assume the object has already been detected, but witlparéect localization.
To further improve the object detection system, we train al@hspecific for object
localization taking advantage of features extracted fio@rRegionlets detection model.

The Regionlets detector [16] is composed of thousands ok wkeasifiers learned
with RealBoost. These weak classifiers are formed as sevasahdes for early re-
jection, yielding fast object detection. The cascade sirecis not related to our re-
localization approach and would not be included in the foilhg presentation without
any misunderstanding. The input of each weak classifierdriRibgionlets model is a 1-
D feature extracted from a rectangular region in the deiaatindow. In the trainging
process, these 1-D features are greedily chosen to minithé&éogistic loss over all
training samples, which is based on classification errorsreMietails about the Re-
gionlets learning and testing are beyond the scope of thiermand can be found from
[16].

Not only does the Regionlets training process greedilycseliscriminative visual
appearances, but also it determines the spatial regiongreecethe 1-D feature. Thus
the resulting weak features extracted from regionlets ity encode thousands of
spatial locations, which could be used to further prediefdtecise location of an object.
It is worth noting that the detector learning only targetsminimizing the classification
error which does not necessarily guarantee that the I@taizerror is also minimized
at the same time.

To leverage the rich spatial information encoded in the &dgis model, we let
each Regionlet vote the object’s position. Given the objezation (I, ¢, r, b) detected
by the object detector({; ¢, r,b) represents the object’s left, top, right and bottom
coordinates, respectively), the problem is equivalentrediat the localization error
(Al,, Aly, Al,., Aly) of the current detection so that the true object locatioomputed
as:

" =1+wAl,, t* =t + hAt,,
=14+ wAr,, b* = b+ hAb,. (8)

Here (I*,t*,r*,b*) is the ground truth object locatiof, ¢, r, b) is the bounding box
detected with the Regionlets model.= » — [ + 1, h = b — ¢ + 1 are the detected
bounding box width and height respectivepAl,,, At,,, Ar,,, Ab,,) are the relative
localization error between the ground truth and the cuidetgction. It is normalized by
the width and height of the detected objécBetections from Regionlets model have

5 We empirically found that using the four coordinates for our localizatiomeh@roduces
better performance than usirig, y, s, a). Thus we choosél, ¢, r, b) in our Regionlets Re-
localization approach.
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various sizes, we observe that normalizing displacemeotseis critical to stabilize the
training and prediction.

Training the localization model is to learn a vectdr so that we can predict the
localization error AL = VTR, whereAL is eitherAl,,, At,,, Ary,, or Ab,,, R is the
feature extracted for from regionlets. We minimize the sgddocalization error in the
model training phase. More specifically, we solve a suppectar regression problem
for each of the four coordinates respectively:

{ H+czmax0|AL - VTR m—e)} 9)
m=1

whereV is the coefficient vector to be learned.L,, is the normalized localization
error of training samplen, R,, is the feature extracted from all the Regionlets in the
object detection model for theth sample as explained in the followindy is the total
number of training examples. The first term in the Equationigahe regularization
term, whileC' is a trade-off factor between the regularization and the stisguared
error,e is the tolerance factor. The problem can be effectivelyeslysing the publicly
available liblinear package [18].

The featureR is extracted from the discriminatively learned Regionki$ection
model. However, directly applying Regionlets featuresdpiaes poor performance.
Based on the weak classifier learned on each Regionletsréeate transfer the 1-
D Regionlet feature into a sparse binary vector. Each Régf®mveak classifier is a
piece-wise linear function implemented using a lookupdabl

hi —sz,j fl _]) (10)

where f; is the 1-D feature extracted from a group of regionl&$f;) quantize the
featuref; into an integer from 1 to &(x) = 1 whenz = 0 otherwise 0{w; ;}5_,
is the classifier weights learned in the boosting trainingcpss. We transfe®)( f;)
into an 8-dimensional binary vector where thejth dimension is computed a$;j) =
1(Q(f;) = j), and1(-) is the indicator function. Apparently, there is one and anig
nonzero dimension in. Note that the Regionlets object detector is a combinatiali o
weak classifiers: v

Z (11)

Thus by concatenating these binary vectors from all weagkstiars, the detection
model naturally producesV dimensional sparse vectors, denote®as (rf, 72, ... r1)7.
It serves as the feature vectfy, in Equation (9). Intuitively, each Regionlets feature
fi has 8 options to vote for the actual object location dependimthe binarized feature
vectorr;. Learning the weight vectdr in Equation (9) is to jointly determine the votes
(regression coefficients) in 8 different scenarios for @gRnlets features.

The sparse binary features extracted from regionlets ayehigh dimensional. We
observed significant over-fitting problem if there are nabagh training samples. To
avoid over-fitting during training, we randomly sample 80uhding boxes around
ground truth objects to train the localization model.
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Discussion The supervised descent search is designed to search meot cdmpdidates
in a principled way to increase the detection rate, and aiafig discriminative visual
model (Regionlets detector) is mandatory to determine #teation scores of new
locations. Regionlets Re-localization is only used to fmtettie accurate object location.
There is no detector followed to evaluate the new locatioim éise supervised search.
Thus it adjusts the detection to a more precise locationauitkhanging the detection
score. In contrast, using the object detector to re-evalie detection score decreases
the performance. Because the newly predicted locationllysgiges lower detection
score which causes the predicted location being eliminatelde post non-max sup-
pression process. To summarize, the role of supervisecediesearch is to find ob-
jects based on detections with coarse locations. Reg®Rketocalization is conducted
on fine detections from supervised descent search. It airgther improvement in
accurate localization based on reasonable good localimafrom supervised descent
search. Leaving out any of these two schemes would signifjcaaort the detection
performance according to our observation.

3 Experiments

We evaluate the proposed detection framework with the Régfi® detector [16] on the
PASCAL VOC2007 dataset and a self-collected car datasetc@llected car dataset
contains 5559 images (17501 cars) for training and 3893 én&t2546 cars) for test-
ing. We use the average precision (AP) and mean averagesiore¢mAP) as perfor-

mance measurement. We first analyze the performance oidocaglaxation search
detection, followed with quantitative results of RegidalRe-localization.

3.1 Location Relaxation Search

In the training phase of supervised descent, our startingpmclude the one from the
Regionlets [16] confident detection and a set of random geations from the ground-
truth. We found adding such starting points with pertudrasamples to be necessary
for a stable training. In testing phase, it always startsyfRegionlets coarse detections.
In this subsection, Regionlets [16] is used as a baselinggidormance comparison to
better understand the location relaxation search. We firgyyghe performance of the
location relaxation search with different bottom-up obje®posals. Then we choose
the best bottom-up setting for a thorough performance avialo.

Effects of bottom-up object proposal The top-down search strategy is evaluated on
bottom-up object hypotheses using several differentagttbased on 1) the color space
used for over-segmentation. 2) the algorithm parametet fseover-segmentation, 3)
the similarity functions (defined in Section 2.1) used fong®ting object proposals.
We use the graph-based image segmentation proposed by&aladhet al. [17](de-
noted as F-g) with the scale parameter k = 50 or k=100 to cajtoth small and large
regions. Two color space are investigated in our experigyeat, the RGB color space
and the Lab color space. Following Section 2.1, the foueddit similarity measures
used are color similarity.., size similarityS;, texture similarityS;, and fill similarity
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Table 1: Cues used to generate object hypotheses. The lastrcshows average
number of object hypotheses generated per image basedsmnahes.

#cues| Color space Segmentation Similarity #object hypotheses
1 RGB F-g (k=50) (Sc, St, Ss, Sy) 955
2 RGB F-g (k=50) | (S, S:, Ss,S%), (St, Ss, S¢) 1454
4 RGB | F-g (k=50, k=100) (S., St, Ss, S), (St, Ss, S7) 2045
8 RGB, Lab | F-g (k=50, k=100) (S., St, Ss,Sf), (St, Ss, Sy) 3367

S¢. There are two levels of combination of these four simijamieasurements. 1) Simi-
larity level: combining these similarities as the final darity measurement for merging
neighbor regions. For examplésS;, Sy) means the final similarity is the weighted
summation of texture similarity and fill similarity. 2) Olgehypotheses level: object
proposals generated using different similarity comboraiare collected together for
coarse detection. The first combination does not increasautimber of object proposals
but it affects the neighbor merging activity. The second bimation increases the total
number of object proposals.

42
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Figure 3: The detection mean average precision vs numbemue$ ased on the
PASCAL VOC 2007 dataseRegionlets: the performance of regionlets without local
searchL RS w/o aspect ratio: Location relaxation search without searching optimal
object aspect ratid. RS w/ aspect ratio: Location relaxation search with aspect ratio
optimization.

We call one bottom-up object hypotheses generation setapesue. The number
of object hypotheses is increased by applying differensdndependently and col-
lecting all the resulting object hypotheses. Obviouslypkaying more cues increases
the chance of covering the target object. Figure 3 showsetecton performance of
our top-down supervised search. We evaluated four detes#tiings which gradually
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Table 2: Performance comparison with the baselines on theCRA VOC 2007
dataset (average precision %). LRS w/o aspect ratio: lmcaglaxation search without
optimizing aspect ratio. LRS w/ aspect ratio: locationxatéon search with optimizing
aspect ratiomAP is the mean average precision over all the 20 categories.

AP % ||laero bike bird boat bottle bus car cat chair cow table

Regionlets [16]53.1 49.5 16.7 25.9 16.3 49.8 64.2 37.9 16.7 39.3 44.7
LRS w/o aspect ratip53.3 49.1 17.0 259 179 50.6 64.5 415 17.2 4@48
LRS w/ aspect ratipb4.2 52.4 180 27.3 225 53.8 68.6 43.1 20.6 428 45.6

dog horse mbike person plant sheep sofatrain tv mAP
Regionlets [16]23.2 50.4 52.7 35.6 11.7 29.5 31.3 56.1 50.0 37.7

LRS w/o aspect ratip25.0 51.6 53.3 36.6 13.0 29.6 34.4 55.6 50.5 38.7

LRS w/ aspect ratip26.2 56.2 57.2 427 16.0 37.0 38.7 57.1 51.7 416

increase the number of cues to get object hypotheses. Thigwations are summa-
rized in Table 1. Figure 3 presents the result including tégomance of the original
coarse Regiolets detection, the performance of our topadmarch without optimizing
object aspect ratio (a setup close to branch-and-bounds-taik, divide and conquer
search) and the performance of our top-down search witimagitig the object aspect
ratio. Although achieving promising improvement by searghonly for the correct
object center and scale, ignoring the aspect ratio durinmersised descent search
substantially suppresses the best detection accuracy mvehtain. Augmented with
aspect ratio search, our top-down supervised search tembjsimprove the detection
performance with a large margin. The more cues we used, titer Iperformance we
have. That is because our supervised descent search iethrgéind a local maximum
which cannot save missing objects which are far away fronttiagse detection.

Overall performance Table 2 shows the detailed performance for each object cate-
gory using 8 cues for coarse detection. Without aspect ss@wch, our method only
improves the detection mean average precision by 1%. Adalpgct ratio to the su-
pervised descent procedure significantly boost the pedoom by 3% . Note that the
detection results of the Regionlets [16] detector repoln@ is the average precision
without conducting the exhaustive local grid seartch.,(only a coarse detection is
applied in order to validate the effectiveness of our suged/descent search). If such
exhaustive local grid search is conducted, it bumps the noABet41.7% as reported

in [16]. Table 2 suggests that our principled supervisedelgssearch achieves compa-
rable results with exhaustive dense local search.

Under standing supervised descent As aforementioned, training the supervised de-
scent models in our experiments takes about 20 to 30 itesatmconverge. Hence in
testing, the supervised descent would run up to 20 to 30 .sTepbetter understand
the supervised descent steps, we use an example to vishaliz¢he bounding box
would be evolving with the progress of the supervised desesrillustrated in Figure 4
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Figure 5: The distance between the

Figure. 4: The trace of. the sear<_:he karched bounding box center and
bounding box center in supervise

q e true object center in supervised
escent. descent.

and Figure 5. In Figure 4, it shows the trace of the objectargtihe pink curve) when
supervised descent is gradually applied. The blue box isritial coarse detection
based on the bottom-up segmentation and the red box is wiesearch converged. We
plot the distance between the searched bounding box cerde¢ha ground truth object
center in Figure 5. The distance is gradually reduced inghech process. Note that this
is just an illustration for understanding the process. bcpce, the algorithm does not
necessarily always converge to a true detection. An ifgiéibn with a false detection
which is far away from any ground truth objects may result imigher false positive
during the local search. We rely on the object detector toighte false positives.

3.2 Regionlets Re-localization

Table 3 shows the performance of our Regionlets Re-lodaizapproach built upon
the location relaxation search on the PASCAL VOC 2007 data&3er localization
model improves 19 out of 20 object categories. For the petategory which usually
has many articulated poses, our approach dramaticallytbtios average precision by
6.3%. It suggests that even a dense search with the classificaodel does not solve
the precise localization problem. This can be explainedhbydct that the classification
model is targeted for robust detection which accommodatascurate object locations,
while a localization model largely complements the effortdccurate object localiza-
tion.

Table 4 shows the comparison between our Regionlets Rézatian and the lo-
cation prediction approach used in DPM (DPM-BB). In corttaDPM-BB for which
the improvements are within 0.5% for most of the object catieg, our method yields
a larger improvement, in average 2.5%. Combined with locatélaxation search, our
detection approach produces 44.1% mean average precistbr BASCAL VOC 2007
dataset, which to our best knowledge, is the best performesmorted on this dataset
without using outside data. Table 5 presents the performammparison of our detector
with recent state-of-the-art detection systems.
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Table 3: Effectiveness of Regionlets Re-localization. LR®gionlets with location
relaxation search with aspect ratio search. LRS-RR: Lonatélaxation search and
Regionlets Re-localization

AP % ||laero bike bird boat bottle bus car cat chair cow table
LRS||54.2 52.4 18.0 27.3 225 53.8 68.6 43.1 20.6 42.8 #45.6
LRS-RR[55.8 535 221 288 251 54.1 715459 22.3 45.7 50.6
dog horse mbike person plant sheep sofa train AP
LRS|[26.2 56.2 57.2 42.7 16.0 37.0 38.7 57.1 51.7 41.6
LRS-RR[29.6 58.4 55.6 49.0 17.6 41.1 424595 54.2 44.1

Table 4: Performance comparison between our Regionletbddization and the
bounding box prediction used in deformable part base m@feM base: base DPM
performance in [19]; DPM with BB: DPM with bounding box pretion in [19]. LRS
base: our base location relaxation search with aspectga#ich. LRS with RR: LRS
with Regionlets Re-localization.

DPM base DPM with BB | Improvement
26.3% 26.8% 0.5%

LRS base LRS with RR | Improvement
41.6% 44.1% 2.5%

The detection performance of Regionlets Re-localizatiothe car dataset is eval-
uated with two different criteria. The first criterion treat detection as true detection
if it has more than 50% overlap (intersection/union) wita ground truth. The second
criterion set the threshold to be 70%, which requires mutteblcalization. As shown
in Table 6, with the 0.5 overlap criterion, our Regionlets|Bealization improves the
performance by 2.6%. With the 0.7 overlap criterion, it &ygimproves the average
precision by 9.1%. This experiment strongly demonstradtasthe detections are much
more accurate after Regionlets Re-localization.

3.3 Run-time Speed

Our detection system runs at 4 frames per second if the @gmnants are ready. The
over segmentation took 1 seconds per image. However, rappnbaches [25] show it
is possible to obtain real-time over segmentation.

4 Conclusions

In this paper, we proposed an object detection strategyhwisica combination of
bottom-up object hypotheses generation and top-down lagjalct search for generic
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Table 5: Comparison with state of the arts using mAP over 28sds. “WC” means the
method utilizes context cues. We do not use any contextrimdtion in our method.

VOC 2007 | Results year
DPM(WC) [4] 35.4 2008
UCI_2009 [20], 27.1 2009
INRIA_2009 [21]] 28.9 2009
MIT_2010[2]] 29.6 2010
Songetal(WC) [22] 37.7 2011
Li etal(WC) [23] 35.2 2011
SSSPM [10]] 33.8 2011
Cinbisetal(WC) [24] 35.0 2012
Regionlets [16] 41.7 2013
Ours(LRS+RR) 44.1 2014

Table 6: Performance of Regionlets Re-localization on #redataset0.5 ov: A true
detection must have more than 50% overlap with the grounith.tfu7 ov: A true
detection much have more than 70% overlap with ground thk.tru

0.50v | 0.70v
LRS | 62.7% | 34.8%
LRS-RR | 65.3% | 43.9%
Improvement| 2.6% | 9.1%

object detection. Our framework optimizes the object lmcain a full parameter space
which can also search the aspect ratio of the object. TheoRkegs Re-localization
model complement existing classification models and caduym® more precise local-
ization, pushing even more accurate object detection.
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