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Introduction 
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 Generic object detection is challenging 
 Rich deformation 
 Arbitrary scales 
 Arbitrary viewpoints 
 

 Limitations of current state of the art 
 Hand-crafted parameters to handle different degrees 

of deformation 
 Sub-optimal multiple scales/viewpoints handling 



 A flexible and general object-level representation 
 Data-driven deformation handling 
 Multiple scales/viewpoints handling using a single 

and flexible model (Detecting an object at its 
original scale and aspect ratio) 

 Fast and easy to be extended with different 
features 

 
 
 
 
 
 
 
 

 

Motivation 
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Detection Framework3 

12/17/2013 Regionlets for Generic Object Detection 4 

2. K. E. A. Van de Sande, et. al. Segmentation as selective search for object recognition. ICCV 2011 
1. B. Alexe , et. al. What is an object?  CVPR 2010 

3. X. Wang, et. al. Regionlets for Generic  Object Detection. ICCV 2013 



 What is regionlet? 
 Region(𝑅): Feature extraction region  
 Regionlet(𝑟1, 𝑟2, 𝑟3): A sub-region in a feature extraction 

area whose position/resolution are relative and normalized 
to a detection window  

 
 
 
 
 
 
 
 

 

Regionlet: Definition 
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 Relative normalized position 

Regionlet: Definition(cont.) 
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Regionlet: Feature extraction 
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Could be SIFT, HOG, LBP , Covariance features, 
whatever feature your like! 

Figure 3 
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Regionlets: Training 

 Constructing the regions/regionlets pool 
 Uniformly sample the position/configuration space of 

regions/regionlets 
 

 Learning realBoost1 cascades 
 16K region/regionlets candidates for each cascade 
 Learning of each cascade stops when the error rate is 

achieved (1% for positive, 37.5% for negative) 
 Last cascade stops after collecting 5000 weak classifiers 
 Result in 4-7 cascades 
 2-3 hours to finish training one category on a 8-core 

machine 

12/17/2013 Regionlets for Generic Object Detection 8 

1. C. Huang, et. al. Boosting nested cascade detector for multi-view face detection. ICPR, 2004. 



 Two-layers deformation handling 
 Data-driven feature extraction region 
 Larger region -> more robust to deformation 
 Small region -> finer spatial layout 

 
 Data-driven non-local max-pooling over regionlets 
 Permutation invariance among regionlets 
 Exclusive feature representation among 

regionlets 
 
 
 
 
 
 
 
 

 

Deformation Handling  
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 Arbitrary scale/viewpoints handling 
 Coordinates of regionlets are normalized in a model 
 Absolute regionlets coordinates are computed on 

the fly based on 
 The normalized coordinates 
 Resolution of the detection window 

 
 
 
 
 
 
 
 
 

 

Scale/viewpoints Handling 
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Figure 4 



Experiments 

 Datasets 
 PASCAL VOC 2007, 2010 

 20 object categories 
 ImageNet Large Scale Object Detection Dataset 

 200 object categories 

 Investigated Features 
 HOG 
 LBP 
 Covariance 
 Deep Convolutional Neural Network (DCNN) feature 
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Regionlets on PASCAL 
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Table 1. Performance on the PASCAL VOC 2007 dataset (Evaluated using Average 
Precision or mean Average Precision: mAP, no DCNN feature, no outside data) 

Table 2: 
Performance  
comparison with 
state of the art 
 



Regionlets on PASCAL 

 Regionlets with Deep CNN feature (outside data) 
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Deep CNN convolutional layer feature (outside data) 
CNN(ImageNet)  + layer5 + SVM1 40.1% 
CNN(ImageNet) + layer5 + Hand-crafted feature + Regionlets 49.3% 

Deep CNN fine-tuned full connected layer feature (outside data) 
CNN(fine-tuned on PASCAL) + FC7 + SVM1 48.0% 

1. R Girshick, et. al. Rich feature hierarchies for accurate object detection and semantic segmentation. TR. 2013 

Will Regionlets model perform at 49.3% + 7.9% = 57.2% using 
fine-tuned full connected layer feature? 

Table 3. Performance with Deep CNN feature 



Regionlets on ImageNet 

 ImageNet Challenge 

12/17/2013 Regionlets for Generic Object Detection 14 

Methods mAP 
UvA-EuVision 22.6% (with DCNN feature) 
Regionlets with deep features(1) 20.9% (with DCNN feature) 
Regionlets without deep features 19.6% (no DCNN feature) 
OverFeat-NYU 19.4% (DCNN) 
Toronto A 11.2% (N/A) 
SYSU_Vision 10.5% (N/A) 

(1) It’s a preliminary result, we have a better performance now! 



Regionlets on ImageNet 

 Performance on the validation dataset 
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Regionlets on ImageNet 

 Top 3 easiest categories: butterfly 
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Regionlets on ImageNet 

 Top 3 easiest categories: Basketball 
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Regionlets on ImageNet 

 Top 3 easiest categories: Dog 
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Regionlets on ImageNet 

 Top 3 hardest categories: backpack 
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Regionlets on ImageNet 

 Top 3 hardest categories: Spatula 
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Regionlets on ImageNet 

 Top 3 hardest categories: Ladle 
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Conclusions 

 A new object representation for object detection 
 Non-local max-pooling of regionlets 
 Relative normalized locations of regionlets  
 Flexibility to incorporate various types of features 
 

 A principled data-driven detection framework, 
effective in handling deformation, multiple 
scales, multiple viewpoints 
 

 Superior performance with a fast running speed 
(.2 seconds per image) 
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